一种新的高动态范围图像局部不变特征提取方法

Yongjun Zhuang, Lei Liang
{"title":"一种新的高动态范围图像局部不变特征提取方法","authors":"Yongjun Zhuang, Lei Liang","doi":"10.1109/IICSPI48186.2019.9095912","DOIUrl":null,"url":null,"abstract":"In order to perform target recognition under realistic conditions, it is necessary to extract local invariant features of a real scene. This paper proposes a novel local invariant feature extraction method for high dynamic range images. Firstly, based on the multi-exposure fusion HDR image calculation model, this paper introduces the perceptual model of human eye vision for scene irradiance, and establishes a complete theoretical model of HDR imaging and mapping. Then, this paper proposes a new LIFT extraction method, which performs LIFT detection on the scene reflection layer and LIFT description on the scene illumination layer. Finally, experiments have shown that this method can increase the number of correct matching of feature points of machine vision wide baseline images. The research results in this paper combine the invariant feature matching technology with the HDR image technology that can record the irradiance value of the real scene, thus expanding the application background of the image LIFT extraction technology.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Local Invariant Feature Extraction Method for High-dynamic Range Images\",\"authors\":\"Yongjun Zhuang, Lei Liang\",\"doi\":\"10.1109/IICSPI48186.2019.9095912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to perform target recognition under realistic conditions, it is necessary to extract local invariant features of a real scene. This paper proposes a novel local invariant feature extraction method for high dynamic range images. Firstly, based on the multi-exposure fusion HDR image calculation model, this paper introduces the perceptual model of human eye vision for scene irradiance, and establishes a complete theoretical model of HDR imaging and mapping. Then, this paper proposes a new LIFT extraction method, which performs LIFT detection on the scene reflection layer and LIFT description on the scene illumination layer. Finally, experiments have shown that this method can increase the number of correct matching of feature points of machine vision wide baseline images. The research results in this paper combine the invariant feature matching technology with the HDR image technology that can record the irradiance value of the real scene, thus expanding the application background of the image LIFT extraction technology.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在真实条件下进行目标识别,需要提取真实场景的局部不变特征。提出了一种新的高动态范围图像局部不变特征提取方法。首先,在多曝光融合HDR图像计算模型的基础上,引入人眼视觉对场景辐照度的感知模型,建立完整的HDR成像与映射理论模型。然后,本文提出了一种新的LIFT提取方法,对场景反射层进行LIFT检测,对场景照明层进行LIFT描述。最后,实验表明,该方法可以提高机器视觉宽基线图像特征点的正确匹配次数。本文的研究成果将不变特征匹配技术与能够记录真实场景辐照度值的HDR图像技术相结合,拓展了图像LIFT提取技术的应用背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Local Invariant Feature Extraction Method for High-dynamic Range Images
In order to perform target recognition under realistic conditions, it is necessary to extract local invariant features of a real scene. This paper proposes a novel local invariant feature extraction method for high dynamic range images. Firstly, based on the multi-exposure fusion HDR image calculation model, this paper introduces the perceptual model of human eye vision for scene irradiance, and establishes a complete theoretical model of HDR imaging and mapping. Then, this paper proposes a new LIFT extraction method, which performs LIFT detection on the scene reflection layer and LIFT description on the scene illumination layer. Finally, experiments have shown that this method can increase the number of correct matching of feature points of machine vision wide baseline images. The research results in this paper combine the invariant feature matching technology with the HDR image technology that can record the irradiance value of the real scene, thus expanding the application background of the image LIFT extraction technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis and Design of System of Experimental Consumables Based on Django and QR code Analysis and Research on the Characteristics of Boiled Yolk based on Hyperspectral Remote Sensing Images Density Peaks Spatial Clustering by Grid Neighborhood Search Modeling of Superheated Steam Temperature Characteristics Based on Fireworks Algorithm Optimized Extreme Learning Machine Fusion Chaotic Prediction Model for Bearing Performance by Computer Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1