{"title":"利用光电化学(PEC)湿法蚀刻合成多孔二氧化硅","authors":"L. S. Chuah, C. W. Chin, Z. Hassan, H. A. Hassan","doi":"10.1109/SMELEC.2006.381099","DOIUrl":null,"url":null,"abstract":"Porous SiO2 can be used as a template to reduce substrate-induced stress, similar to porous GaN. Such a regrowth method may reduce the defect density in the epitaxial layer leading to high quality stress free layer on porous template. The samples were prepared on silicon (Si) wafers, (111)-oriented, with n- doping. After standard cleaning steps, SiO2 of 1200 Aring thickness was prepared by thermal oxidation of the Si at 1000deg C for 1.50 hours. The wafer was then cleaved into few pieces. To prepare porous structures by photoelectrochemical (PEC) method, the samples were dipped into a mixture of hydrofluoric acid (HF): water: ethanol under different etching durations. Structural properties of porous SiO2 have been investigated by scanning electron microscope (SEM). Elemental composition of the sample was identified using energy dispersive X-ray (EDX) analysis. Fourier transform infrared reflectance (FTIR) spectroscopy was used to characterize the chemical species and chemical bonding state.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Porous Silicon Dioxide Synthesized using Photoelectrochemical (PEC) Wet Etching\",\"authors\":\"L. S. Chuah, C. W. Chin, Z. Hassan, H. A. Hassan\",\"doi\":\"10.1109/SMELEC.2006.381099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porous SiO2 can be used as a template to reduce substrate-induced stress, similar to porous GaN. Such a regrowth method may reduce the defect density in the epitaxial layer leading to high quality stress free layer on porous template. The samples were prepared on silicon (Si) wafers, (111)-oriented, with n- doping. After standard cleaning steps, SiO2 of 1200 Aring thickness was prepared by thermal oxidation of the Si at 1000deg C for 1.50 hours. The wafer was then cleaved into few pieces. To prepare porous structures by photoelectrochemical (PEC) method, the samples were dipped into a mixture of hydrofluoric acid (HF): water: ethanol under different etching durations. Structural properties of porous SiO2 have been investigated by scanning electron microscope (SEM). Elemental composition of the sample was identified using energy dispersive X-ray (EDX) analysis. Fourier transform infrared reflectance (FTIR) spectroscopy was used to characterize the chemical species and chemical bonding state.\",\"PeriodicalId\":136703,\"journal\":{\"name\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2006.381099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.381099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Porous Silicon Dioxide Synthesized using Photoelectrochemical (PEC) Wet Etching
Porous SiO2 can be used as a template to reduce substrate-induced stress, similar to porous GaN. Such a regrowth method may reduce the defect density in the epitaxial layer leading to high quality stress free layer on porous template. The samples were prepared on silicon (Si) wafers, (111)-oriented, with n- doping. After standard cleaning steps, SiO2 of 1200 Aring thickness was prepared by thermal oxidation of the Si at 1000deg C for 1.50 hours. The wafer was then cleaved into few pieces. To prepare porous structures by photoelectrochemical (PEC) method, the samples were dipped into a mixture of hydrofluoric acid (HF): water: ethanol under different etching durations. Structural properties of porous SiO2 have been investigated by scanning electron microscope (SEM). Elemental composition of the sample was identified using energy dispersive X-ray (EDX) analysis. Fourier transform infrared reflectance (FTIR) spectroscopy was used to characterize the chemical species and chemical bonding state.