简单基因选择方法在癌症分类中的应用研究

Salim Sazzed
{"title":"简单基因选择方法在癌症分类中的应用研究","authors":"Salim Sazzed","doi":"10.1109/BIBE52308.2021.9635167","DOIUrl":null,"url":null,"abstract":"Gene expression datasets usually contain a large number of genes which impose a computational burden and complexity on the classifier. Thus, feature selection plays an integral part in sophisticated cancer classification frameworks. In the existing literature, feature selections have been often performed by computationally expensive methods (e.g., wrapper-based methods, evolutionary algorithms). In this paper, we show that the combinations of various simple feature selection methods that require minimal computational cost are often effective for cancer classification. We utilize two sets of simple statistical methods to identify the topmost class-correlated genes (set 1) and eliminate redundant genes (set 2), respectively. Finally, the selected gene set is integrated with the support vector machine (SVM) classifier. The performances of these simple methodologies are compared with a number of existing methods on ten gene expression benchmark datasets. It is observed that in many datasets, these simple methodologies yield similar efficacy to the complex and computationally expensive approaches using only a small number of genes.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An investigation of the performances of simple gene selection methodologies for cancer classification\",\"authors\":\"Salim Sazzed\",\"doi\":\"10.1109/BIBE52308.2021.9635167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression datasets usually contain a large number of genes which impose a computational burden and complexity on the classifier. Thus, feature selection plays an integral part in sophisticated cancer classification frameworks. In the existing literature, feature selections have been often performed by computationally expensive methods (e.g., wrapper-based methods, evolutionary algorithms). In this paper, we show that the combinations of various simple feature selection methods that require minimal computational cost are often effective for cancer classification. We utilize two sets of simple statistical methods to identify the topmost class-correlated genes (set 1) and eliminate redundant genes (set 2), respectively. Finally, the selected gene set is integrated with the support vector machine (SVM) classifier. The performances of these simple methodologies are compared with a number of existing methods on ten gene expression benchmark datasets. It is observed that in many datasets, these simple methodologies yield similar efficacy to the complex and computationally expensive approaches using only a small number of genes.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因表达数据集通常包含大量基因,这给分类器带来了计算负担和复杂性。因此,特征选择在复杂的癌症分类框架中起着不可或缺的作用。在现有文献中,特征选择通常是通过计算昂贵的方法(例如,基于包装的方法,进化算法)进行的。在本文中,我们证明了需要最小计算成本的各种简单特征选择方法的组合通常对癌症分类是有效的。我们利用两组简单的统计方法分别识别最顶层的类相关基因(集合1)和消除冗余基因(集合2)。最后,将选择的基因集与支持向量机(SVM)分类器集成。在10个基因表达基准数据集上,将这些简单方法的性能与许多现有方法进行了比较。可以观察到,在许多数据集中,这些简单的方法与仅使用少量基因的复杂且计算成本高的方法产生相似的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation of the performances of simple gene selection methodologies for cancer classification
Gene expression datasets usually contain a large number of genes which impose a computational burden and complexity on the classifier. Thus, feature selection plays an integral part in sophisticated cancer classification frameworks. In the existing literature, feature selections have been often performed by computationally expensive methods (e.g., wrapper-based methods, evolutionary algorithms). In this paper, we show that the combinations of various simple feature selection methods that require minimal computational cost are often effective for cancer classification. We utilize two sets of simple statistical methods to identify the topmost class-correlated genes (set 1) and eliminate redundant genes (set 2), respectively. Finally, the selected gene set is integrated with the support vector machine (SVM) classifier. The performances of these simple methodologies are compared with a number of existing methods on ten gene expression benchmark datasets. It is observed that in many datasets, these simple methodologies yield similar efficacy to the complex and computationally expensive approaches using only a small number of genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1