三段式雷达的通量反转

J. Baldwin
{"title":"三段式雷达的通量反转","authors":"J. Baldwin","doi":"10.1109/TEC.1962.5219429","DOIUrl":null,"url":null,"abstract":"When the flux in the driven branch of a multipath core is reversed most of it will return via the shortest return path in the core. A small fraction will return by the next shortest. The ratio of the flux change in the shortest path to that in the next shortest is called the branching ratio r. Experimental branching ratios are much larger than they reasonably should be. In this paper a magnetic circuit analysis which neglects leakage and reversible flux but includes the dependence of branch reluctance on flux is applied to the three-rung laddic. The calculations predict a branching ratio at infinite drive which is about a factor of two greater than might be naively expected. Except in special cases they predict that it should decrease monotonically with drive. Experimentally it may either increase, decrease, or saturate shortly after threshold. The experimental values are uniformly greater than the theoretical. It appears likely that the disparity between theory and experiment can be attributed to flux leakage during switching. This leakage may be minimized by silver plating the core. A remeasurement of the branching ratio as a function of drive and geometry seems to be indicated at the present time.","PeriodicalId":177496,"journal":{"name":"IRE Trans. Electron. Comput.","volume":"200 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1962-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flux Reversal in Three-Rung Laddics\",\"authors\":\"J. Baldwin\",\"doi\":\"10.1109/TEC.1962.5219429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the flux in the driven branch of a multipath core is reversed most of it will return via the shortest return path in the core. A small fraction will return by the next shortest. The ratio of the flux change in the shortest path to that in the next shortest is called the branching ratio r. Experimental branching ratios are much larger than they reasonably should be. In this paper a magnetic circuit analysis which neglects leakage and reversible flux but includes the dependence of branch reluctance on flux is applied to the three-rung laddic. The calculations predict a branching ratio at infinite drive which is about a factor of two greater than might be naively expected. Except in special cases they predict that it should decrease monotonically with drive. Experimentally it may either increase, decrease, or saturate shortly after threshold. The experimental values are uniformly greater than the theoretical. It appears likely that the disparity between theory and experiment can be attributed to flux leakage during switching. This leakage may be minimized by silver plating the core. A remeasurement of the branching ratio as a function of drive and geometry seems to be indicated at the present time.\",\"PeriodicalId\":177496,\"journal\":{\"name\":\"IRE Trans. Electron. Comput.\",\"volume\":\"200 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1962-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRE Trans. Electron. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEC.1962.5219429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRE Trans. Electron. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEC.1962.5219429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当多径磁芯驱动支路中的磁通发生反转时,大部分磁通将通过磁芯中最短的返回路径返回。一小部分会在下一个最短值之前返回。最短路径上的通量变化与下一个最短路径上的通量变化之比称为分支比r。实验中的分支比远远大于合理的值。本文将一种忽略漏磁和可逆磁的磁路分析方法应用于三阶电机,该方法考虑了分支磁阻对磁通的依赖。计算预测在无限驱动下的分支比可能比天真的预期大两倍。除了在特殊情况下,他们预测它应该随着驱动器单调地减少。实验表明,在阈值后不久,它可能增加、减少或饱和。实验值均匀地大于理论值。理论与实验之间的差异很可能是由于开关过程中的漏磁造成的。这种泄漏可以通过在铁芯上镀银来减少。现在似乎要重新测量分支比作为驱动和几何的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flux Reversal in Three-Rung Laddics
When the flux in the driven branch of a multipath core is reversed most of it will return via the shortest return path in the core. A small fraction will return by the next shortest. The ratio of the flux change in the shortest path to that in the next shortest is called the branching ratio r. Experimental branching ratios are much larger than they reasonably should be. In this paper a magnetic circuit analysis which neglects leakage and reversible flux but includes the dependence of branch reluctance on flux is applied to the three-rung laddic. The calculations predict a branching ratio at infinite drive which is about a factor of two greater than might be naively expected. Except in special cases they predict that it should decrease monotonically with drive. Experimentally it may either increase, decrease, or saturate shortly after threshold. The experimental values are uniformly greater than the theoretical. It appears likely that the disparity between theory and experiment can be attributed to flux leakage during switching. This leakage may be minimized by silver plating the core. A remeasurement of the branching ratio as a function of drive and geometry seems to be indicated at the present time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Electronic Generator of Random Numbers Real-Time Computation and Recursive Functions Not Real-Time Computable A Transistor Flip-Flop Full Binary Adder Bias-Controlled Tunnel-Pair Logic Circuits Analog-To-Digital Converter Utilizing an Esaki Diode Stack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1