基于先验信息的无线定位系统cram - rao下界分析

Yubin Zhao, Yuan Yang, M. Kyas
{"title":"基于先验信息的无线定位系统cram<s:1> - rao下界分析","authors":"Yubin Zhao, Yuan Yang, M. Kyas","doi":"10.1109/WPNC.2014.6843296","DOIUrl":null,"url":null,"abstract":"Bayesian estimation methods are widely used for wireless localization systems. They employ priori information and current measurement error distribution models to derive the state of a mobile target. Cramér-Rao lower bound (CRLB) is a fundamental tool to analyze the performance of Bayesian estimators. Although CRLB is derived based on the measurement error distribution, only a few works have investigated the performance using priori information. In this paper, we derive the CRLB formulation in three cases by using the priori information: (1) fundamental Bayesian process; (2) recursive process; (3) adaptive process. These three processes represent the common Bayesian tracking algorithms for wireless system. Simulations are constructed to compare the localization performance according to the different processes. The results indicate how the priori information influences the location estimation and how to improve the performance according to different scenarios.","PeriodicalId":106193,"journal":{"name":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cramér-Rao lower bound analysis for wireless localization systems using priori information\",\"authors\":\"Yubin Zhao, Yuan Yang, M. Kyas\",\"doi\":\"10.1109/WPNC.2014.6843296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian estimation methods are widely used for wireless localization systems. They employ priori information and current measurement error distribution models to derive the state of a mobile target. Cramér-Rao lower bound (CRLB) is a fundamental tool to analyze the performance of Bayesian estimators. Although CRLB is derived based on the measurement error distribution, only a few works have investigated the performance using priori information. In this paper, we derive the CRLB formulation in three cases by using the priori information: (1) fundamental Bayesian process; (2) recursive process; (3) adaptive process. These three processes represent the common Bayesian tracking algorithms for wireless system. Simulations are constructed to compare the localization performance according to the different processes. The results indicate how the priori information influences the location estimation and how to improve the performance according to different scenarios.\",\"PeriodicalId\":106193,\"journal\":{\"name\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2014.6843296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2014.6843296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

贝叶斯估计方法广泛应用于无线定位系统。他们利用先验信息和当前测量误差分布模型来推导移动目标的状态。cram - rao下界(CRLB)是分析贝叶斯估计性能的基本工具。虽然CRLB是基于测量误差分布推导出来的,但利用先验信息对其性能进行研究的作品很少。本文利用先验信息导出了三种情况下的CRLB公式:(1)基本贝叶斯过程;(2)递归过程;(3)适应过程。这三个过程代表了无线系统中常用的贝叶斯跟踪算法。根据不同的定位过程,构造了仿真来比较定位性能。研究结果说明了先验信息对定位估计的影响,以及在不同场景下如何提高定位估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cramér-Rao lower bound analysis for wireless localization systems using priori information
Bayesian estimation methods are widely used for wireless localization systems. They employ priori information and current measurement error distribution models to derive the state of a mobile target. Cramér-Rao lower bound (CRLB) is a fundamental tool to analyze the performance of Bayesian estimators. Although CRLB is derived based on the measurement error distribution, only a few works have investigated the performance using priori information. In this paper, we derive the CRLB formulation in three cases by using the priori information: (1) fundamental Bayesian process; (2) recursive process; (3) adaptive process. These three processes represent the common Bayesian tracking algorithms for wireless system. Simulations are constructed to compare the localization performance according to the different processes. The results indicate how the priori information influences the location estimation and how to improve the performance according to different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined high-resolution ranging and high data rate wireless communication system in the 60 GHz band Cramér-Rao lower bound analysis for wireless localization systems using priori information Robust cooperative localization in mixed LOS and NLOS environments using TOA Metric velocity and landmark distance estimation utilizing monocular camera images and IMU data Improved mobility modeling for indoor localization applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1