使用结构动态时间翘曲的离线签名验证

Michael Stauffer, Paul Maergner, Andreas Fischer, R. Ingold, Kaspar Riesen
{"title":"使用结构动态时间翘曲的离线签名验证","authors":"Michael Stauffer, Paul Maergner, Andreas Fischer, R. Ingold, Kaspar Riesen","doi":"10.1109/ICDAR.2019.00181","DOIUrl":null,"url":null,"abstract":"In recent years, different approaches for handwriting recognition that are based on graph representations have been proposed (e.g. graph-based keyword spotting or signature verification). This trend is mostly due to the availability of novel fast graph matching algorithms, as well as the inherent flexibility and expressivity of graph data structures when compared to vectorial representations. That is, graphs are able to directly adapt their size and structure to the size and complexity of the respective handwritten entities. However, the vast majority of the proposed approaches match the graphs from a global perspective only. In the present paper, we propose to match the underlying graphs from different local perspectives and combine the resulting assignments by means of Dynamic Time Warping. Moreover, we show that the proposed approach can be readily combined with global matchings. In an experimental evaluation, we employ the novel method in a signature verification scenario on two widely used benchmark datasets. On both datasets, we empirically confirm that the proposed approach outperforms state-of-the-art methods with respect to both accuracy and runtime.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"31 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Offline Signature Verification using Structural Dynamic Time Warping\",\"authors\":\"Michael Stauffer, Paul Maergner, Andreas Fischer, R. Ingold, Kaspar Riesen\",\"doi\":\"10.1109/ICDAR.2019.00181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, different approaches for handwriting recognition that are based on graph representations have been proposed (e.g. graph-based keyword spotting or signature verification). This trend is mostly due to the availability of novel fast graph matching algorithms, as well as the inherent flexibility and expressivity of graph data structures when compared to vectorial representations. That is, graphs are able to directly adapt their size and structure to the size and complexity of the respective handwritten entities. However, the vast majority of the proposed approaches match the graphs from a global perspective only. In the present paper, we propose to match the underlying graphs from different local perspectives and combine the resulting assignments by means of Dynamic Time Warping. Moreover, we show that the proposed approach can be readily combined with global matchings. In an experimental evaluation, we employ the novel method in a signature verification scenario on two widely used benchmark datasets. On both datasets, we empirically confirm that the proposed approach outperforms state-of-the-art methods with respect to both accuracy and runtime.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"31 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,人们提出了不同的基于图表示的手写识别方法(如基于图的关键字识别或签名验证)。这种趋势主要是由于新的快速图匹配算法的可用性,以及与向量表示相比,图数据结构固有的灵活性和表达性。也就是说,图形能够直接调整其大小和结构以适应各自手写实体的大小和复杂性。然而,绝大多数建议的方法仅从全局角度匹配图。在本文中,我们提出从不同的局部角度匹配底层图,并利用动态时间翘曲的方法组合得到的赋值。此外,我们还证明了所提出的方法可以很容易地与全局匹配相结合。在实验评估中,我们在两个广泛使用的基准数据集的签名验证场景中使用了该新方法。在这两个数据集上,我们从经验上证实,所提出的方法在准确性和运行时间方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offline Signature Verification using Structural Dynamic Time Warping
In recent years, different approaches for handwriting recognition that are based on graph representations have been proposed (e.g. graph-based keyword spotting or signature verification). This trend is mostly due to the availability of novel fast graph matching algorithms, as well as the inherent flexibility and expressivity of graph data structures when compared to vectorial representations. That is, graphs are able to directly adapt their size and structure to the size and complexity of the respective handwritten entities. However, the vast majority of the proposed approaches match the graphs from a global perspective only. In the present paper, we propose to match the underlying graphs from different local perspectives and combine the resulting assignments by means of Dynamic Time Warping. Moreover, we show that the proposed approach can be readily combined with global matchings. In an experimental evaluation, we employ the novel method in a signature verification scenario on two widely used benchmark datasets. On both datasets, we empirically confirm that the proposed approach outperforms state-of-the-art methods with respect to both accuracy and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1