{"title":"利用磁场对重力时空变形的实验研究","authors":"심충건","doi":"10.17958/ksmt.21.4.201908.629","DOIUrl":null,"url":null,"abstract":"The curvature of spacetime represented by Einstein field equation has many physical implications, including gravity. As light is deflected by the curvature of spacetime, a magnetic field will also be influenced by the curved spacetime. A permanent magnet is generally known to maintain its persistent magnetic field on the ground as long as there is no external magnetic interference. However, a series of experiments find that there are noticeable changes in the magnetic fields distribution while the permanent magnet rotates. The magnetic field lines of the permanent magnet are deflected towards Earth’s centre, implying a possibility that we can use magnetic field, a more efficient tool than a satellite, to measure the curvature of spacetime. However, comparing the experimental results of this study with theoretically obtained values of the curvature of spacetime remains a vast area of research for future studies.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"자기장을 이용한 중력의 시공간 변형에 대한 실험적 연구\",\"authors\":\"심충건\",\"doi\":\"10.17958/ksmt.21.4.201908.629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The curvature of spacetime represented by Einstein field equation has many physical implications, including gravity. As light is deflected by the curvature of spacetime, a magnetic field will also be influenced by the curved spacetime. A permanent magnet is generally known to maintain its persistent magnetic field on the ground as long as there is no external magnetic interference. However, a series of experiments find that there are noticeable changes in the magnetic fields distribution while the permanent magnet rotates. The magnetic field lines of the permanent magnet are deflected towards Earth’s centre, implying a possibility that we can use magnetic field, a more efficient tool than a satellite, to measure the curvature of spacetime. However, comparing the experimental results of this study with theoretically obtained values of the curvature of spacetime remains a vast area of research for future studies.\",\"PeriodicalId\":168106,\"journal\":{\"name\":\"Journal of the Korean Society of Mechanical Technology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Mechanical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17958/ksmt.21.4.201908.629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.21.4.201908.629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The curvature of spacetime represented by Einstein field equation has many physical implications, including gravity. As light is deflected by the curvature of spacetime, a magnetic field will also be influenced by the curved spacetime. A permanent magnet is generally known to maintain its persistent magnetic field on the ground as long as there is no external magnetic interference. However, a series of experiments find that there are noticeable changes in the magnetic fields distribution while the permanent magnet rotates. The magnetic field lines of the permanent magnet are deflected towards Earth’s centre, implying a possibility that we can use magnetic field, a more efficient tool than a satellite, to measure the curvature of spacetime. However, comparing the experimental results of this study with theoretically obtained values of the curvature of spacetime remains a vast area of research for future studies.