{"title":"一种用于紧凑测量设备的改进的圆柱形NFFFT","authors":"A. Osipov, H. Kobayashi, H. Suzuki","doi":"10.1109/APMC.2012.6421903","DOIUrl":null,"url":null,"abstract":"An improved version of the cylindrical near-field-to-far-field transformation (NFFFT) with computational complexity comparable to that of the circular NFFFT is described. Instead of producing a 3D radar image the proposed approach generates a 2D projection of the image on the plane, in which the radar cross section is to be determined. The imaging operator is modified so as to allow probes with directivity patterns and scanning surfaces of smaller radii.","PeriodicalId":359125,"journal":{"name":"2012 Asia Pacific Microwave Conference Proceedings","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An improved cylindrical NFFFT for compact measurement facilities\",\"authors\":\"A. Osipov, H. Kobayashi, H. Suzuki\",\"doi\":\"10.1109/APMC.2012.6421903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved version of the cylindrical near-field-to-far-field transformation (NFFFT) with computational complexity comparable to that of the circular NFFFT is described. Instead of producing a 3D radar image the proposed approach generates a 2D projection of the image on the plane, in which the radar cross section is to be determined. The imaging operator is modified so as to allow probes with directivity patterns and scanning surfaces of smaller radii.\",\"PeriodicalId\":359125,\"journal\":{\"name\":\"2012 Asia Pacific Microwave Conference Proceedings\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Asia Pacific Microwave Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2012.6421903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Asia Pacific Microwave Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2012.6421903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved cylindrical NFFFT for compact measurement facilities
An improved version of the cylindrical near-field-to-far-field transformation (NFFFT) with computational complexity comparable to that of the circular NFFFT is described. Instead of producing a 3D radar image the proposed approach generates a 2D projection of the image on the plane, in which the radar cross section is to be determined. The imaging operator is modified so as to allow probes with directivity patterns and scanning surfaces of smaller radii.