基于语音-文本的多模态情感识别方法

Yiying Zhang, Nan Zhang, Yiyang Liu, Caixia Ma, Delong Wang
{"title":"基于语音-文本的多模态情感识别方法","authors":"Yiying Zhang, Nan Zhang, Yiyang Liu, Caixia Ma, Delong Wang","doi":"10.1109/ICTech55460.2022.00088","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of low recognition rate and easy to be disturbed by noise in the process of single-mode speech emotion recognition, this paper proposes a speech emotion analysis method based on multi feature fusion of speech and semantics. This method uses opensmile to extract acoustic features and Bi long and short term memory network (Bi-LSTM) to extract semantic features, then carries out feature data fusion, and then inputs the fused data into SVM classification model to obtain the final emotion classification result. This method can effectively solve the shortcomings of single-mode emotion recognition and improve the efficiency and accuracy of recognition.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multimodal Emotion Recognition Method Based on Speech-Text\",\"authors\":\"Yiying Zhang, Nan Zhang, Yiyang Liu, Caixia Ma, Delong Wang\",\"doi\":\"10.1109/ICTech55460.2022.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of low recognition rate and easy to be disturbed by noise in the process of single-mode speech emotion recognition, this paper proposes a speech emotion analysis method based on multi feature fusion of speech and semantics. This method uses opensmile to extract acoustic features and Bi long and short term memory network (Bi-LSTM) to extract semantic features, then carries out feature data fusion, and then inputs the fused data into SVM classification model to obtain the final emotion classification result. This method can effectively solve the shortcomings of single-mode emotion recognition and improve the efficiency and accuracy of recognition.\",\"PeriodicalId\":290836,\"journal\":{\"name\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTech55460.2022.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对单模语音情感识别过程中识别率低、易受噪声干扰的问题,提出了一种基于语音和语义多特征融合的语音情感分析方法。该方法采用opensmile提取声学特征,Bi长短期记忆网络(Bi- lstm)提取语义特征,然后进行特征数据融合,将融合后的数据输入SVM分类模型,得到最终的情感分类结果。该方法可以有效地解决单模情感识别的不足,提高识别的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multimodal Emotion Recognition Method Based on Speech-Text
Aiming at the problems of low recognition rate and easy to be disturbed by noise in the process of single-mode speech emotion recognition, this paper proposes a speech emotion analysis method based on multi feature fusion of speech and semantics. This method uses opensmile to extract acoustic features and Bi long and short term memory network (Bi-LSTM) to extract semantic features, then carries out feature data fusion, and then inputs the fused data into SVM classification model to obtain the final emotion classification result. This method can effectively solve the shortcomings of single-mode emotion recognition and improve the efficiency and accuracy of recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin Model Construction and Management Method of Workshop Based on Cloud Platform Security Enhancement for SMS Verification Code in Mobile Payment Intelligent Drug Delivery Car System Using STM32 Motor Fault Diagnosis Method Based on Deep Learning Design and Implementation of SPARQL Engine Based on Heuristic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1