基于知识图的图嵌入推荐技术

László Grad-Gyenge, A. Kiss, P. Filzmoser
{"title":"基于知识图的图嵌入推荐技术","authors":"László Grad-Gyenge, A. Kiss, P. Filzmoser","doi":"10.1145/3099023.3099096","DOIUrl":null,"url":null,"abstract":"This paper presents a novel, graph embedding based recommendation technique. The method operates on the knowledge graph, an information representation technique alloying content-based and collaborative information. To generate recommendations, a two dimensional embedding is developed for the knowledge graph. As the embedding maps the users and the items to the same vector space, the recommendations are then calculated on a spatial basis. Regarding to the number of cold start cases, precision, recall, normalized Cumulative Discounted Gain and computational resource need, the evaluation shows that the introduced technique delivers a higher performance compared to collaborative filtering on top-n recommendation lists. Our further finding is that graph embedding based methods show a more stable performance in the case of an increasing amount of user preference information compared to the benchmark method.","PeriodicalId":219391,"journal":{"name":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Graph Embedding Based Recommendation Techniques on the Knowledge Graph\",\"authors\":\"László Grad-Gyenge, A. Kiss, P. Filzmoser\",\"doi\":\"10.1145/3099023.3099096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel, graph embedding based recommendation technique. The method operates on the knowledge graph, an information representation technique alloying content-based and collaborative information. To generate recommendations, a two dimensional embedding is developed for the knowledge graph. As the embedding maps the users and the items to the same vector space, the recommendations are then calculated on a spatial basis. Regarding to the number of cold start cases, precision, recall, normalized Cumulative Discounted Gain and computational resource need, the evaluation shows that the introduced technique delivers a higher performance compared to collaborative filtering on top-n recommendation lists. Our further finding is that graph embedding based methods show a more stable performance in the case of an increasing amount of user preference information compared to the benchmark method.\",\"PeriodicalId\":219391,\"journal\":{\"name\":\"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3099023.3099096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3099023.3099096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种新的基于图嵌入的推荐技术。该方法是基于知识图的,知识图是一种基于内容和协作的信息表示技术。为了生成推荐,对知识图进行了二维嵌入。当嵌入将用户和项目映射到相同的向量空间时,然后根据空间计算推荐。在冷启动案例的数量、准确率、召回率、标准化累积贴现增益和计算资源需求方面,评估表明,与top-n推荐列表上的协同过滤相比,引入的技术提供了更高的性能。我们进一步发现,与基准方法相比,基于图嵌入的方法在用户偏好信息数量增加的情况下表现出更稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Embedding Based Recommendation Techniques on the Knowledge Graph
This paper presents a novel, graph embedding based recommendation technique. The method operates on the knowledge graph, an information representation technique alloying content-based and collaborative information. To generate recommendations, a two dimensional embedding is developed for the knowledge graph. As the embedding maps the users and the items to the same vector space, the recommendations are then calculated on a spatial basis. Regarding to the number of cold start cases, precision, recall, normalized Cumulative Discounted Gain and computational resource need, the evaluation shows that the introduced technique delivers a higher performance compared to collaborative filtering on top-n recommendation lists. Our further finding is that graph embedding based methods show a more stable performance in the case of an increasing amount of user preference information compared to the benchmark method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Culture in the Effect of Age and Gender on Social Influence in Persuasive Technology Automated Data-Driven Hints for Computer Programming Students An Approach to Improve Physical Activity by Generating Individual Implementation Intentions Personalizing Social Influence Strategies in a Q&A Social Network Adaptive Support For Group Formation In Computer Supported Collaborative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1