静电驱动微机械红外法布里-帕氏滤波器的电荷控制

S. Lehmann, M. Ebermann, N. Neumann
{"title":"静电驱动微机械红外法布里-帕氏滤波器的电荷控制","authors":"S. Lehmann, M. Ebermann, N. Neumann","doi":"10.1117/12.2029302","DOIUrl":null,"url":null,"abstract":"In this work, the applicability of charge controlled electrostatically tuneable optical filters is investigated. The filters are based on a Fabry-Pérot architecture, fabricated in a bulk micromachining process. Compared to surface micromachined devices, this design opens a path to higher optical performance due to the high planarity and low roughness of substrates but also introduces the drawback of acceleration sensitivity because of a moving mass. The common way of tuning those electrostatic actuators by applying constant voltages decreases the effective stiffness of the system and thus further increases this sensitivity for large deflections. In addition, the tuning range is limited to one third of the initial electrode spacing due to the pull-in effect. Therefore, designing voltage-controlled electrostatic actuators of such optical filters result in tough tradeoffs between initial electrode spacing, spring stiffness, supply voltage and chip area. In order to overcome the limitation of the tuning range and relax these tradeoffs, controlling the charge instead of voltage by using a switched capacitor amplifier is examined. Experiments have shown that it is possible to obtain a stable relative displacement of up to 60% limited by reflector tipping. Measuring gravity impact confirmed the expected reduced deflection dependency. Thus, it is possible to downsize the initial electrode spacing by 45% and the spring stiffness by 40% while achieving the same optical tuning range and acceleration sensitivity as in voltage mode. However, because of reflector tilting and the associated filter bandwidth degradation, a further tradeoff arises when using relative deflections greater 40 %.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Charge control of electrostatically actuated micromechanical infrared Fabry-Pérot filters\",\"authors\":\"S. Lehmann, M. Ebermann, N. Neumann\",\"doi\":\"10.1117/12.2029302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the applicability of charge controlled electrostatically tuneable optical filters is investigated. The filters are based on a Fabry-Pérot architecture, fabricated in a bulk micromachining process. Compared to surface micromachined devices, this design opens a path to higher optical performance due to the high planarity and low roughness of substrates but also introduces the drawback of acceleration sensitivity because of a moving mass. The common way of tuning those electrostatic actuators by applying constant voltages decreases the effective stiffness of the system and thus further increases this sensitivity for large deflections. In addition, the tuning range is limited to one third of the initial electrode spacing due to the pull-in effect. Therefore, designing voltage-controlled electrostatic actuators of such optical filters result in tough tradeoffs between initial electrode spacing, spring stiffness, supply voltage and chip area. In order to overcome the limitation of the tuning range and relax these tradeoffs, controlling the charge instead of voltage by using a switched capacitor amplifier is examined. Experiments have shown that it is possible to obtain a stable relative displacement of up to 60% limited by reflector tipping. Measuring gravity impact confirmed the expected reduced deflection dependency. Thus, it is possible to downsize the initial electrode spacing by 45% and the spring stiffness by 40% while achieving the same optical tuning range and acceleration sensitivity as in voltage mode. However, because of reflector tilting and the associated filter bandwidth degradation, a further tradeoff arises when using relative deflections greater 40 %.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2029302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2029302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了电荷控制的静电可调谐滤光片的适用性。该滤波器基于fabry - p逍遥结构,采用批量微加工工艺制造。与表面微机械设备相比,由于基板的高平面度和低粗糙度,该设计开辟了一条通往更高光学性能的道路,但也引入了由于移动质量而导致加速度灵敏度的缺点。通过施加恒定电压来调整这些静电致动器的常用方法降低了系统的有效刚度,从而进一步增加了对大偏转的灵敏度。此外,由于拉入效应,调谐范围被限制在初始电极间距的三分之一。因此,设计这种光学滤波器的压控静电致动器需要在初始电极间距、弹簧刚度、电源电压和芯片面积之间进行艰难的权衡。为了克服调谐范围的限制和缓解这些权衡,研究了使用开关电容放大器来控制电荷而不是电压。实验表明,受反射器倾斜的限制,可以获得高达60%的稳定相对位移。测量重力影响证实了预期的减少偏转依赖。因此,可以将初始电极间距减小45%,弹簧刚度减小40%,同时实现与电压模式相同的光学调谐范围和加速灵敏度。然而,由于反射器倾斜和相关的滤波器带宽下降,当使用相对偏转大于40%时,会产生进一步的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge control of electrostatically actuated micromechanical infrared Fabry-Pérot filters
In this work, the applicability of charge controlled electrostatically tuneable optical filters is investigated. The filters are based on a Fabry-Pérot architecture, fabricated in a bulk micromachining process. Compared to surface micromachined devices, this design opens a path to higher optical performance due to the high planarity and low roughness of substrates but also introduces the drawback of acceleration sensitivity because of a moving mass. The common way of tuning those electrostatic actuators by applying constant voltages decreases the effective stiffness of the system and thus further increases this sensitivity for large deflections. In addition, the tuning range is limited to one third of the initial electrode spacing due to the pull-in effect. Therefore, designing voltage-controlled electrostatic actuators of such optical filters result in tough tradeoffs between initial electrode spacing, spring stiffness, supply voltage and chip area. In order to overcome the limitation of the tuning range and relax these tradeoffs, controlling the charge instead of voltage by using a switched capacitor amplifier is examined. Experiments have shown that it is possible to obtain a stable relative displacement of up to 60% limited by reflector tipping. Measuring gravity impact confirmed the expected reduced deflection dependency. Thus, it is possible to downsize the initial electrode spacing by 45% and the spring stiffness by 40% while achieving the same optical tuning range and acceleration sensitivity as in voltage mode. However, because of reflector tilting and the associated filter bandwidth degradation, a further tradeoff arises when using relative deflections greater 40 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact camera technologies for real-time false-color imaging in the SWIR band Arbitrary waveform generation using optical direct digital synthesis Advances in AlGaInN laser diode technology for defence applications Design of high sensitivity detector for underwater communication system Automated generation of high-quality training data for appearance-based object models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1