基于马尔可夫到达过程的计算机病毒传播估计

H. Okamura, T. Dohi
{"title":"基于马尔可夫到达过程的计算机病毒传播估计","authors":"H. Okamura, T. Dohi","doi":"10.1109/PRDC.2010.36","DOIUrl":null,"url":null,"abstract":"This paper refines statistical inference of computer virus propagation with maximum likelihood (ML) estimation. In particular, in order to utilize actual infection data that are opened in Web sites, we reformulate classical stochastic models by Markovian arrival processes (MAPs). The reformulated models lead to plausible parameter estimation based on the ML estimation. We propose efficient algorithms to compute the ML estimates of epidemic models using the EM (expectation-maximization) algorithm. Experiments illustrate the estimation of virus propagation with real infection data by our methods. Finally we refer to characterization of virus propagation from the view point of stochastic modeling.","PeriodicalId":382974,"journal":{"name":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Estimating Computer Virus Propagation Based on Markovian Arrival Processes\",\"authors\":\"H. Okamura, T. Dohi\",\"doi\":\"10.1109/PRDC.2010.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper refines statistical inference of computer virus propagation with maximum likelihood (ML) estimation. In particular, in order to utilize actual infection data that are opened in Web sites, we reformulate classical stochastic models by Markovian arrival processes (MAPs). The reformulated models lead to plausible parameter estimation based on the ML estimation. We propose efficient algorithms to compute the ML estimates of epidemic models using the EM (expectation-maximization) algorithm. Experiments illustrate the estimation of virus propagation with real infection data by our methods. Finally we refer to characterization of virus propagation from the view point of stochastic modeling.\",\"PeriodicalId\":382974,\"journal\":{\"name\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2010.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文利用最大似然估计改进了计算机病毒传播的统计推断。特别是,为了利用网站上公开的实际感染数据,我们通过马尔可夫到达过程(MAPs)重新制定了经典的随机模型。重新表述的模型导致基于ML估计的似是而非的参数估计。我们提出了使用EM(期望最大化)算法来计算流行病模型的ML估计的有效算法。实验结果表明,本文提出的方法可以用实际感染数据对病毒传播进行估计。最后,我们从随机建模的角度来描述病毒的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Computer Virus Propagation Based on Markovian Arrival Processes
This paper refines statistical inference of computer virus propagation with maximum likelihood (ML) estimation. In particular, in order to utilize actual infection data that are opened in Web sites, we reformulate classical stochastic models by Markovian arrival processes (MAPs). The reformulated models lead to plausible parameter estimation based on the ML estimation. We propose efficient algorithms to compute the ML estimates of epidemic models using the EM (expectation-maximization) algorithm. Experiments illustrate the estimation of virus propagation with real infection data by our methods. Finally we refer to characterization of virus propagation from the view point of stochastic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe Measurement-Based Worst-Case Execution Time Estimation Using Automatic Test-Data Generation An Improved Knowledge Connectivity Condition for Fault-Tolerant Consensus with Unknown Participants On the Reliability of Cascaded TMR Systems A Learning-Based Approach to Secure Web Services from SQL/XPath Injection Attacks Address Remapping for Static NUCA in NoC-Based Degradable Chip-Multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1