Ahmadi Irmansyah Lubis, Umri Erdiansyah, Feri Setiawan
{"title":"结合AHP方法和Weighted Product来确定教师助理绩效评估","authors":"Ahmadi Irmansyah Lubis, Umri Erdiansyah, Feri Setiawan","doi":"10.47709/digitech.v1i2.1101","DOIUrl":null,"url":null,"abstract":"Dalam riset ini bertujuan untuk menguji dan menerapkan metode AHP dan Weighted Product dalam pengambilan keputusan untuk penentuan peringkat dari hasil evaluasi kinerja asisten pengajar. Bobot kriteria diperoleh berdasarkan perhitungan nilai dari metode AHP dan Weighted Product digunakan untuk perhitungan perankingan alternatif terbaik dari data yang digunakan. Data pengujian yang digunakan bersumber dari UCI iMachine Learning iRepository yaitu Teaching Assistant Evaluation Dataset yang merupakan data evaluasi kinerja dari asisten pengajar yang memiliki 151 record data, 5 kriteria, dan 1 variable kelas serta data set tersebut berjenis multivariate. Hasil dari pengujian metode AHP dan Weighted Product pada penelitian ini menunjukkan bahwa kedua metode tersebut mampu dalam menghasilkan nilai bobot kriteria secara objektif berdasarkan bobot Eigen Vector AHP serta dapat menghasilkan perangkingan alternatif terbaik melalui perhitungan Weighted Product dengan menghasilkan A134 dengan nilai preferensi akhir yaitu 0.0107 sebagai ialternatif terbaik sedangkan A96 dengan nilai preferensi akhir sebesar 0.0034 sebagai ialternatif iterendah dengan waktu eksekusi yang diperoleh yaitu 1.27 detik.","PeriodicalId":339181,"journal":{"name":"Digital Transformation Technology","volume":"10 45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kombinasi Metode AHP dan Weighted Product Dalam Penentuan Evaluasi Kinerja Asisten Pengajar\",\"authors\":\"Ahmadi Irmansyah Lubis, Umri Erdiansyah, Feri Setiawan\",\"doi\":\"10.47709/digitech.v1i2.1101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dalam riset ini bertujuan untuk menguji dan menerapkan metode AHP dan Weighted Product dalam pengambilan keputusan untuk penentuan peringkat dari hasil evaluasi kinerja asisten pengajar. Bobot kriteria diperoleh berdasarkan perhitungan nilai dari metode AHP dan Weighted Product digunakan untuk perhitungan perankingan alternatif terbaik dari data yang digunakan. Data pengujian yang digunakan bersumber dari UCI iMachine Learning iRepository yaitu Teaching Assistant Evaluation Dataset yang merupakan data evaluasi kinerja dari asisten pengajar yang memiliki 151 record data, 5 kriteria, dan 1 variable kelas serta data set tersebut berjenis multivariate. Hasil dari pengujian metode AHP dan Weighted Product pada penelitian ini menunjukkan bahwa kedua metode tersebut mampu dalam menghasilkan nilai bobot kriteria secara objektif berdasarkan bobot Eigen Vector AHP serta dapat menghasilkan perangkingan alternatif terbaik melalui perhitungan Weighted Product dengan menghasilkan A134 dengan nilai preferensi akhir yaitu 0.0107 sebagai ialternatif terbaik sedangkan A96 dengan nilai preferensi akhir sebesar 0.0034 sebagai ialternatif iterendah dengan waktu eksekusi yang diperoleh yaitu 1.27 detik.\",\"PeriodicalId\":339181,\"journal\":{\"name\":\"Digital Transformation Technology\",\"volume\":\"10 45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Transformation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47709/digitech.v1i2.1101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Transformation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/digitech.v1i2.1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kombinasi Metode AHP dan Weighted Product Dalam Penentuan Evaluasi Kinerja Asisten Pengajar
Dalam riset ini bertujuan untuk menguji dan menerapkan metode AHP dan Weighted Product dalam pengambilan keputusan untuk penentuan peringkat dari hasil evaluasi kinerja asisten pengajar. Bobot kriteria diperoleh berdasarkan perhitungan nilai dari metode AHP dan Weighted Product digunakan untuk perhitungan perankingan alternatif terbaik dari data yang digunakan. Data pengujian yang digunakan bersumber dari UCI iMachine Learning iRepository yaitu Teaching Assistant Evaluation Dataset yang merupakan data evaluasi kinerja dari asisten pengajar yang memiliki 151 record data, 5 kriteria, dan 1 variable kelas serta data set tersebut berjenis multivariate. Hasil dari pengujian metode AHP dan Weighted Product pada penelitian ini menunjukkan bahwa kedua metode tersebut mampu dalam menghasilkan nilai bobot kriteria secara objektif berdasarkan bobot Eigen Vector AHP serta dapat menghasilkan perangkingan alternatif terbaik melalui perhitungan Weighted Product dengan menghasilkan A134 dengan nilai preferensi akhir yaitu 0.0107 sebagai ialternatif terbaik sedangkan A96 dengan nilai preferensi akhir sebesar 0.0034 sebagai ialternatif iterendah dengan waktu eksekusi yang diperoleh yaitu 1.27 detik.