构建高精度的普通话语音识别器

M. Hwang, Gang Peng, Wen Wang, Arlo Faria, A. Heidel, Mari Ostendorf
{"title":"构建高精度的普通话语音识别器","authors":"M. Hwang, Gang Peng, Wen Wang, Arlo Faria, A. Heidel, Mari Ostendorf","doi":"10.1109/ASRU.2007.4430161","DOIUrl":null,"url":null,"abstract":"We describe a highly accurate large-vocabulary continuous Mandarin speech recognizer, a collaborative effort among four research organizations. Particularly, we build two acoustic models (AMs) with significant differences but similar accuracy for the purposes of cross adaptation and system combination. This paper elaborates on the main differences between the two systems, where one recognizer incorporates a discriminatively trained feature while the other utilizes a discriminative feature transformation. Additionally we present an improved acoustic segmentation algorithm and topic-based language model (LM) adaptation. Coupled with increased acoustic training data, we reduced the character error rate (CER) of the DARPA GALE 2006 evaluation set to 15.3% from 18.4%.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Building a highly accurate Mandarin speech recognizer\",\"authors\":\"M. Hwang, Gang Peng, Wen Wang, Arlo Faria, A. Heidel, Mari Ostendorf\",\"doi\":\"10.1109/ASRU.2007.4430161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a highly accurate large-vocabulary continuous Mandarin speech recognizer, a collaborative effort among four research organizations. Particularly, we build two acoustic models (AMs) with significant differences but similar accuracy for the purposes of cross adaptation and system combination. This paper elaborates on the main differences between the two systems, where one recognizer incorporates a discriminatively trained feature while the other utilizes a discriminative feature transformation. Additionally we present an improved acoustic segmentation algorithm and topic-based language model (LM) adaptation. Coupled with increased acoustic training data, we reduced the character error rate (CER) of the DARPA GALE 2006 evaluation set to 15.3% from 18.4%.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们描述了一个高度精确的大词汇连续普通话语音识别器,这是四个研究机构的合作成果。特别地,我们建立了两种具有显著差异但精度相近的声学模型(AMs),用于交叉适应和系统组合。本文详细阐述了两个系统之间的主要区别,其中一个识别器包含判别训练特征,而另一个识别器使用判别特征转换。此外,我们提出了一种改进的声学分割算法和基于主题的语言模型(LM)自适应。再加上声学训练数据的增加,我们将DARPA GALE 2006评估集的字符错误率(CER)从18.4%降低到15.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building a highly accurate Mandarin speech recognizer
We describe a highly accurate large-vocabulary continuous Mandarin speech recognizer, a collaborative effort among four research organizations. Particularly, we build two acoustic models (AMs) with significant differences but similar accuracy for the purposes of cross adaptation and system combination. This paper elaborates on the main differences between the two systems, where one recognizer incorporates a discriminatively trained feature while the other utilizes a discriminative feature transformation. Additionally we present an improved acoustic segmentation algorithm and topic-based language model (LM) adaptation. Coupled with increased acoustic training data, we reduced the character error rate (CER) of the DARPA GALE 2006 evaluation set to 15.3% from 18.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1