基于多尺度小波模型的改进螺旋感重建

Bo Liu, E. Abdelsalam, J. Sheng, L. Ying
{"title":"基于多尺度小波模型的改进螺旋感重建","authors":"Bo Liu, E. Abdelsalam, J. Sheng, L. Ying","doi":"10.1109/ISBI.2008.4541294","DOIUrl":null,"url":null,"abstract":"SENSE has been widely accepted and extensively studied in the community of parallel MRI. Although many regularization approaches have been developed to address the ill-conditioning problem for Cartesian SENSE, fewer efforts have been made to address this problem when the sampling trajectory is non-Cartesian. For non-Cartesian SENSE using the iterative conjugate gradient method, ill- conditioning can degrade not only the signal-to-noise ratio, but also the convergence behavior. This paper proposes a regularization technique for non-Cartesian SENSE using a multiscale wavelet model. The technique models the desired image as a random field whose wavelet transform coefficients obey a generalized Gaussian distribution. The effectiveness of the proposed method has been validated by in vivo experiments.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Improved spiral sense reconstruction using a multiscale wavelet model\",\"authors\":\"Bo Liu, E. Abdelsalam, J. Sheng, L. Ying\",\"doi\":\"10.1109/ISBI.2008.4541294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SENSE has been widely accepted and extensively studied in the community of parallel MRI. Although many regularization approaches have been developed to address the ill-conditioning problem for Cartesian SENSE, fewer efforts have been made to address this problem when the sampling trajectory is non-Cartesian. For non-Cartesian SENSE using the iterative conjugate gradient method, ill- conditioning can degrade not only the signal-to-noise ratio, but also the convergence behavior. This paper proposes a regularization technique for non-Cartesian SENSE using a multiscale wavelet model. The technique models the desired image as a random field whose wavelet transform coefficients obey a generalized Gaussian distribution. The effectiveness of the proposed method has been validated by in vivo experiments.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在平行核磁共振界,SENSE已被广泛接受和广泛研究。尽管已经开发了许多正则化方法来解决笛卡尔感知的病态问题,但当采样轨迹是非笛卡尔轨迹时,解决这一问题的努力较少。对于采用迭代共轭梯度法的非笛卡儿传感器,不适调理不仅会降低信噪比,而且会降低收敛性。本文提出了一种基于多尺度小波模型的非笛卡儿传感器正则化技术。该技术将期望图像建模为小波变换系数服从广义高斯分布的随机场。通过体内实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved spiral sense reconstruction using a multiscale wavelet model
SENSE has been widely accepted and extensively studied in the community of parallel MRI. Although many regularization approaches have been developed to address the ill-conditioning problem for Cartesian SENSE, fewer efforts have been made to address this problem when the sampling trajectory is non-Cartesian. For non-Cartesian SENSE using the iterative conjugate gradient method, ill- conditioning can degrade not only the signal-to-noise ratio, but also the convergence behavior. This paper proposes a regularization technique for non-Cartesian SENSE using a multiscale wavelet model. The technique models the desired image as a random field whose wavelet transform coefficients obey a generalized Gaussian distribution. The effectiveness of the proposed method has been validated by in vivo experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1