研究冷冻单元辅助引擎的性能及冷却水特性

최연성, 권영철
{"title":"研究冷冻单元辅助引擎的性能及冷却水特性","authors":"최연성, 권영철","doi":"10.17958/ksmt.21.5.201910.779","DOIUrl":null,"url":null,"abstract":"In this study, the change of cooling water temperature (72, 85, 95 ℃) and engine speed (1,800, 2,000, 2,200, 2,400rpm) were experimentally investigated to confirm the operation performance characteristics of auxiliary engine for refrigeration unit. The experimental setup consisted of fuel consumption meter, power meter, and heat transfer unit. The operation performances such as BSFC, exhaust temperature, power generation, and engine efficiency of the auxiliary engine showed similar characteristics in the present experimental range, according to the change of cooling water temperatures and rpms. As the torque increased, the BSFC decreased significantly and the exhaust temperature increased. The power generation increased linearly and the efficiency was insignificant at more than 40 Nm torque.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"냉동유닛용 보조엔진의 성능 및 냉각수 특성 연구\",\"authors\":\"최연성, 권영철\",\"doi\":\"10.17958/ksmt.21.5.201910.779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the change of cooling water temperature (72, 85, 95 ℃) and engine speed (1,800, 2,000, 2,200, 2,400rpm) were experimentally investigated to confirm the operation performance characteristics of auxiliary engine for refrigeration unit. The experimental setup consisted of fuel consumption meter, power meter, and heat transfer unit. The operation performances such as BSFC, exhaust temperature, power generation, and engine efficiency of the auxiliary engine showed similar characteristics in the present experimental range, according to the change of cooling water temperatures and rpms. As the torque increased, the BSFC decreased significantly and the exhaust temperature increased. The power generation increased linearly and the efficiency was insignificant at more than 40 Nm torque.\",\"PeriodicalId\":168106,\"journal\":{\"name\":\"Journal of the Korean Society of Mechanical Technology\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Mechanical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17958/ksmt.21.5.201910.779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.21.5.201910.779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过实验研究冷却水温度(72、85、95℃)和发动机转速(1800、2000、2200、2400 rpm)的变化,确定了制冷机组辅机的运行性能特征。实验装置由油耗计、功率计和传热装置组成。在本实验范围内,根据冷却水温度和转速的变化,辅机的BSFC、排气温度、发电量、发动机效率等运行性能表现出相似的特征。随着转矩的增大,BSFC显著降低,排气温度升高。当转矩大于40 Nm时,功率线性增加,效率不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
냉동유닛용 보조엔진의 성능 및 냉각수 특성 연구
In this study, the change of cooling water temperature (72, 85, 95 ℃) and engine speed (1,800, 2,000, 2,200, 2,400rpm) were experimentally investigated to confirm the operation performance characteristics of auxiliary engine for refrigeration unit. The experimental setup consisted of fuel consumption meter, power meter, and heat transfer unit. The operation performances such as BSFC, exhaust temperature, power generation, and engine efficiency of the auxiliary engine showed similar characteristics in the present experimental range, according to the change of cooling water temperatures and rpms. As the torque increased, the BSFC decreased significantly and the exhaust temperature increased. The power generation increased linearly and the efficiency was insignificant at more than 40 Nm torque.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Why Does a Changing Electric Field Create a Magnetic Field Eddy Current Damping System의 진동 저감 특성 평가 필라멘트 와인딩 공법에 의한 30m급 굴절형 고소작업차용 유리섬유/에폭시 복합재 붐 개발에 관한 연구 흡착압력에 따른 수직 평판유리 변형특성에 대한 구조해석 쉬라우드형 조류발전 시스템의 다중 채널구조에 따른 해수유동장 분석
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1