{"title":"用遗传算法构建多层前馈二元神经网络","authors":"C. Chow, Tong Lee","doi":"10.1109/IJCNN.2002.1007547","DOIUrl":null,"url":null,"abstract":"An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of multi-layer feedforward binary neural network by a genetic algorithm\",\"authors\":\"C. Chow, Tong Lee\",\"doi\":\"10.1109/IJCNN.2002.1007547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of multi-layer feedforward binary neural network by a genetic algorithm
An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.