用遗传算法构建多层前馈二元神经网络

C. Chow, Tong Lee
{"title":"用遗传算法构建多层前馈二元神经网络","authors":"C. Chow, Tong Lee","doi":"10.1109/IJCNN.2002.1007547","DOIUrl":null,"url":null,"abstract":"An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of multi-layer feedforward binary neural network by a genetic algorithm\",\"authors\":\"C. Chow, Tong Lee\",\"doi\":\"10.1109/IJCNN.2002.1007547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种自动确定前馈二元神经网络拓扑结构的方法。该方法基于构造算法,每次构造一层隐藏节点,直到问题解决。在每一层中,算法通过一个生长过程来确定所需的节点数量,通过寻找最优的隐藏节点来划分输入训练数据集。这是通过遗传算法完成的。该算法可以自动确定所需的隐藏层数和每层隐藏节点的数量。在一些基准问题上的测试表明,与几何学习方法相比,所提出的技术在网络复杂性和识别精度方面都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of multi-layer feedforward binary neural network by a genetic algorithm
An approach is introduced to determine the topology of a feedforward binary neural network automatically. The approach is based on a construction algorithm that constructs one layer of hidden nodes at a time until the problem is solved. In each layer, the algorithm determines the necessary number of nodes through a growth process by finding the best hidden node that would help to partition the input training data set. This is done using a genetic algorithm. The proposed algorithm can determine the necessary number of hidden layers and number of hidden nodes at each layer automatically. Tests on a number of benchmark problems illustrated the effectiveness of the proposed technique, both in terms of network complexity and recognition accuracy, compared with a geometrical learning approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1