{"title":"第9章。纳米材料的连续流动合成","authors":"A. Kulkarni, Rajashri B. Jundale","doi":"10.1039/9781788016094-00316","DOIUrl":null,"url":null,"abstract":"Continuous flow synthesis of nanoparticles is now a well-accepted and reliable synthesis approach that gives consistent product properties. This chapter aims to do a critical analysis of the recent work in some of the relevant areas and gives specific recommendations where flow synthesis of nanomaterials can be realized as a reliable manufacturing process. The chapter also highlights the typical engineering issues that one needs to consider while transforming a batch synthesis protocol into continuous mode and its scale-up.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chapter 9. Continuous Flow Synthesis of Nanomaterials\",\"authors\":\"A. Kulkarni, Rajashri B. Jundale\",\"doi\":\"10.1039/9781788016094-00316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous flow synthesis of nanoparticles is now a well-accepted and reliable synthesis approach that gives consistent product properties. This chapter aims to do a critical analysis of the recent work in some of the relevant areas and gives specific recommendations where flow synthesis of nanomaterials can be realized as a reliable manufacturing process. The chapter also highlights the typical engineering issues that one needs to consider while transforming a batch synthesis protocol into continuous mode and its scale-up.\",\"PeriodicalId\":202204,\"journal\":{\"name\":\"Green Chemistry Series\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016094-00316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016094-00316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chapter 9. Continuous Flow Synthesis of Nanomaterials
Continuous flow synthesis of nanoparticles is now a well-accepted and reliable synthesis approach that gives consistent product properties. This chapter aims to do a critical analysis of the recent work in some of the relevant areas and gives specific recommendations where flow synthesis of nanomaterials can be realized as a reliable manufacturing process. The chapter also highlights the typical engineering issues that one needs to consider while transforming a batch synthesis protocol into continuous mode and its scale-up.