Tinglin Duan, Parinya Punpongsanon, Shengxin Jia, D. Iwai, Kosuke Sato, K. Plataniotis
{"title":"基于无人机代理和触觉力反馈的远程环境探测","authors":"Tinglin Duan, Parinya Punpongsanon, Shengxin Jia, D. Iwai, Kosuke Sato, K. Plataniotis","doi":"10.1109/AIVR46125.2019.00034","DOIUrl":null,"url":null,"abstract":"Camera drones allow exploring remote scenes that are inaccessible or inappropriate to visit in person. However, these exploration experiences are often limited due to insufficient scene information provided by front cameras, where only 2D images or videos are supplied. Combining a camera drone vision with haptic feedback would augment users' spatial understandings of the remote environment. But such designs are usually difficult for users to learn and apply, due to the complexity of the system and unfluent UAV control. In this paper, we present a new telepresence system for remote environment exploration, with a drone agent controlled by a VR mid-air panel. The drone is capable of generating real-time location and landmark details using integrated Simultaneous Location and Mapping (SLAM). The SLAMs' point cloud generations are produced using RGB input, and the results are passed to a Generative Adversarial Network (GAN) to reconstruct 3D remote scenes in real-time. The reconstructed objects are taken advantage of by haptic devices which could improve user experience through haptic rendering. Capable of providing both visual and haptic feedback, our system allows users to examine and exploit remote areas without having to be physically present. An experiment has been conducted to verify the usability of 3D reconstruction result in haptic feedback rendering.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Remote Environment Exploration with Drone Agent and Haptic Force Feedback\",\"authors\":\"Tinglin Duan, Parinya Punpongsanon, Shengxin Jia, D. Iwai, Kosuke Sato, K. Plataniotis\",\"doi\":\"10.1109/AIVR46125.2019.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camera drones allow exploring remote scenes that are inaccessible or inappropriate to visit in person. However, these exploration experiences are often limited due to insufficient scene information provided by front cameras, where only 2D images or videos are supplied. Combining a camera drone vision with haptic feedback would augment users' spatial understandings of the remote environment. But such designs are usually difficult for users to learn and apply, due to the complexity of the system and unfluent UAV control. In this paper, we present a new telepresence system for remote environment exploration, with a drone agent controlled by a VR mid-air panel. The drone is capable of generating real-time location and landmark details using integrated Simultaneous Location and Mapping (SLAM). The SLAMs' point cloud generations are produced using RGB input, and the results are passed to a Generative Adversarial Network (GAN) to reconstruct 3D remote scenes in real-time. The reconstructed objects are taken advantage of by haptic devices which could improve user experience through haptic rendering. Capable of providing both visual and haptic feedback, our system allows users to examine and exploit remote areas without having to be physically present. An experiment has been conducted to verify the usability of 3D reconstruction result in haptic feedback rendering.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote Environment Exploration with Drone Agent and Haptic Force Feedback
Camera drones allow exploring remote scenes that are inaccessible or inappropriate to visit in person. However, these exploration experiences are often limited due to insufficient scene information provided by front cameras, where only 2D images or videos are supplied. Combining a camera drone vision with haptic feedback would augment users' spatial understandings of the remote environment. But such designs are usually difficult for users to learn and apply, due to the complexity of the system and unfluent UAV control. In this paper, we present a new telepresence system for remote environment exploration, with a drone agent controlled by a VR mid-air panel. The drone is capable of generating real-time location and landmark details using integrated Simultaneous Location and Mapping (SLAM). The SLAMs' point cloud generations are produced using RGB input, and the results are passed to a Generative Adversarial Network (GAN) to reconstruct 3D remote scenes in real-time. The reconstructed objects are taken advantage of by haptic devices which could improve user experience through haptic rendering. Capable of providing both visual and haptic feedback, our system allows users to examine and exploit remote areas without having to be physically present. An experiment has been conducted to verify the usability of 3D reconstruction result in haptic feedback rendering.