混合时钟问题队列设计的能源意识,高性能核心

V. Rapaka, Emil Talpes, Diana Marculescu
{"title":"混合时钟问题队列设计的能源意识,高性能核心","authors":"V. Rapaka, Emil Talpes, Diana Marculescu","doi":"10.1109/ASPDAC.2004.1337603","DOIUrl":null,"url":null,"abstract":"Globally-asynchronous, locally-synchronous (GALS) design style has started to gain interest recently as a possible solution to the increased design complexity, power and thermal costs, as well as an enabler for allowing fine grain speed and voltage management. Due to its inherent complexity, a possible driver application for such a design style is the case of superscalar, out-of-order processors. We propose a novel mixed-clock issue queue design, and compares and contrasts this new implementation with existing synchronous or mixed-clock versions of issue queues, used in standalone mode or in conjunction with mixed-clock FIFO (first-in, first-out) buffers for inter-domain synchronization. Both transistor level, SPICE simulation, as well as cycle-accurate, microarchitectural analysis, show that cores using mixed-clock issue queues are able to provide better energy-performance operating points when compared to their synchronous or asynchronous FIFO-based counterparts.","PeriodicalId":426349,"journal":{"name":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mixed-clock issue queue design for energy aware, high-performance cores\",\"authors\":\"V. Rapaka, Emil Talpes, Diana Marculescu\",\"doi\":\"10.1109/ASPDAC.2004.1337603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally-asynchronous, locally-synchronous (GALS) design style has started to gain interest recently as a possible solution to the increased design complexity, power and thermal costs, as well as an enabler for allowing fine grain speed and voltage management. Due to its inherent complexity, a possible driver application for such a design style is the case of superscalar, out-of-order processors. We propose a novel mixed-clock issue queue design, and compares and contrasts this new implementation with existing synchronous or mixed-clock versions of issue queues, used in standalone mode or in conjunction with mixed-clock FIFO (first-in, first-out) buffers for inter-domain synchronization. Both transistor level, SPICE simulation, as well as cycle-accurate, microarchitectural analysis, show that cores using mixed-clock issue queues are able to provide better energy-performance operating points when compared to their synchronous or asynchronous FIFO-based counterparts.\",\"PeriodicalId\":426349,\"journal\":{\"name\":\"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2004.1337603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2004.1337603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

全球异步,本地同步(GALS)设计风格最近开始引起人们的兴趣,因为它可以解决日益增加的设计复杂性,功率和热成本,以及实现细粒度速度和电压管理。由于其固有的复杂性,这种设计风格的一个可能的驱动应用程序是超标量、乱序处理器的情况。我们提出了一种新的混合时钟问题队列设计,并将这种新实现与现有的同步或混合时钟版本的问题队列进行比较和对比,这些问题队列用于独立模式或与混合时钟FIFO(先进先出)缓冲区一起用于域间同步。晶体管级、SPICE模拟以及周期精确的微架构分析都表明,与基于同步或异步fifo的内核相比,使用混合时钟问题队列的内核能够提供更好的能效工作点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixed-clock issue queue design for energy aware, high-performance cores
Globally-asynchronous, locally-synchronous (GALS) design style has started to gain interest recently as a possible solution to the increased design complexity, power and thermal costs, as well as an enabler for allowing fine grain speed and voltage management. Due to its inherent complexity, a possible driver application for such a design style is the case of superscalar, out-of-order processors. We propose a novel mixed-clock issue queue design, and compares and contrasts this new implementation with existing synchronous or mixed-clock versions of issue queues, used in standalone mode or in conjunction with mixed-clock FIFO (first-in, first-out) buffers for inter-domain synchronization. Both transistor level, SPICE simulation, as well as cycle-accurate, microarchitectural analysis, show that cores using mixed-clock issue queues are able to provide better energy-performance operating points when compared to their synchronous or asynchronous FIFO-based counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fixed-outline floorplanning through evolutionary search Optimal design of high fan-in multiplexers via mixed-integer nonlinear programming A V/sub DD/ and temperature independent CMOS voltage reference circuit Energy efficient code generation exploiting reduced bit-width instruction set architectures (rISA) Improvement of saturation characteristics of a frequency-demodulation CMOS image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1