四种黑盒对抗攻击的评估及一些查询效率改进分析

Rui Wang
{"title":"四种黑盒对抗攻击的评估及一些查询效率改进分析","authors":"Rui Wang","doi":"10.1109/PHM2022-London52454.2022.00059","DOIUrl":null,"url":null,"abstract":"With the fast development of machine learning technologies, deep learning models have been deployed in almost every aspect of everyday life. However, the privacy and security of these models are threatened by adversarial attacks. Among which black-box attack is closer to reality, where limited knowledge can be acquired from the model. In this paper, we provided basic background knowledge about adversarial attack and analyzed four black-box attack algorithms: Bandits, NES, Square Attack and ZOsignSGD comprehensively. We also explored the newly proposed Square Attack method with respect to square size, hoping to improve its query efficiency.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Four Black-box Adversarial Attacks and Some Query-efficient Improvement Analysis\",\"authors\":\"Rui Wang\",\"doi\":\"10.1109/PHM2022-London52454.2022.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the fast development of machine learning technologies, deep learning models have been deployed in almost every aspect of everyday life. However, the privacy and security of these models are threatened by adversarial attacks. Among which black-box attack is closer to reality, where limited knowledge can be acquired from the model. In this paper, we provided basic background knowledge about adversarial attack and analyzed four black-box attack algorithms: Bandits, NES, Square Attack and ZOsignSGD comprehensively. We also explored the newly proposed Square Attack method with respect to square size, hoping to improve its query efficiency.\",\"PeriodicalId\":269605,\"journal\":{\"name\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM2022-London52454.2022.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习技术的快速发展,深度学习模型已经应用于日常生活的方方面面。然而,这些模型的隐私和安全受到对抗性攻击的威胁。其中黑盒攻击更接近现实,从模型中获取的知识有限。在本文中,我们提供了对抗性攻击的基本背景知识,并全面分析了四种黑盒攻击算法:Bandits, NES, Square attack和ZOsignSGD。我们还针对方形大小探索了新提出的方形攻击方法,希望提高其查询效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Four Black-box Adversarial Attacks and Some Query-efficient Improvement Analysis
With the fast development of machine learning technologies, deep learning models have been deployed in almost every aspect of everyday life. However, the privacy and security of these models are threatened by adversarial attacks. Among which black-box attack is closer to reality, where limited knowledge can be acquired from the model. In this paper, we provided basic background knowledge about adversarial attack and analyzed four black-box attack algorithms: Bandits, NES, Square Attack and ZOsignSGD comprehensively. We also explored the newly proposed Square Attack method with respect to square size, hoping to improve its query efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1