城市环境中使用2D边缘地图的点云配准细化

David Avidar, D. Malah, M. Barzohar
{"title":"城市环境中使用2D边缘地图的点云配准细化","authors":"David Avidar, D. Malah, M. Barzohar","doi":"10.1109/ICSEE.2018.8646245","DOIUrl":null,"url":null,"abstract":"As 3D point cloud acquisition sensors become increasingly prevalent in urban environments (e.g., LiDAR sensors for autonomous vehicles), the need arises to find efficient ways to align large amounts of such 3D data, often in real-time. In this work, we propose a novel method for 3D point cloud registration refinement in an urban environment (e.g., between Terrestrial LiDAR Scans - TLS - and Airborne LiDAR Scans - ALS), assuming an initial coarse registration is available. The proposed method is based on estimation of the direction of gravity, wall detection, projection of the point clouds on a perpendicular horizontal plane, and conversion into 2D edge-maps. Then, two methods are considered for alignment between the 2D edge-maps: a 2D variant of the well-known ICP (Iterative Closest Point) algorithm, and Edge-Map Phase-Correlation (EMPC). We demonstrate the usefulness of the proposed methods for registration in this challenging task, where the 2D variant of ICP achieves a meaningful advantage over 3D ICP in terms of runtime, while maintaining comparable registration accuracy.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point Cloud Registration Refinement in an Urban Environment using 2D Edge-Maps\",\"authors\":\"David Avidar, D. Malah, M. Barzohar\",\"doi\":\"10.1109/ICSEE.2018.8646245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As 3D point cloud acquisition sensors become increasingly prevalent in urban environments (e.g., LiDAR sensors for autonomous vehicles), the need arises to find efficient ways to align large amounts of such 3D data, often in real-time. In this work, we propose a novel method for 3D point cloud registration refinement in an urban environment (e.g., between Terrestrial LiDAR Scans - TLS - and Airborne LiDAR Scans - ALS), assuming an initial coarse registration is available. The proposed method is based on estimation of the direction of gravity, wall detection, projection of the point clouds on a perpendicular horizontal plane, and conversion into 2D edge-maps. Then, two methods are considered for alignment between the 2D edge-maps: a 2D variant of the well-known ICP (Iterative Closest Point) algorithm, and Edge-Map Phase-Correlation (EMPC). We demonstrate the usefulness of the proposed methods for registration in this challenging task, where the 2D variant of ICP achieves a meaningful advantage over 3D ICP in terms of runtime, while maintaining comparable registration accuracy.\",\"PeriodicalId\":254455,\"journal\":{\"name\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEE.2018.8646245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着3D点云采集传感器在城市环境中变得越来越普遍(例如,用于自动驾驶汽车的LiDAR传感器),需要找到有效的方法来实时对齐大量此类3D数据。在这项工作中,我们提出了一种在城市环境中(例如,在地面激光雷达扫描- TLS -和机载激光雷达扫描- ALS之间)进行3D点云配准细化的新方法,假设初始粗配准可用。该方法是基于重力方向估计、墙检测、点云在垂直水平面上的投影以及转换成二维边缘图。然后,考虑了两种用于二维边缘图对齐的方法:众所周知的ICP(迭代最近点)算法的二维变体和边缘图相位相关(EMPC)。我们证明了在这一具有挑战性的任务中所提出的注册方法的实用性,其中2D版本的ICP在运行时间方面比3D版本的ICP具有明显的优势,同时保持了相当的注册精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point Cloud Registration Refinement in an Urban Environment using 2D Edge-Maps
As 3D point cloud acquisition sensors become increasingly prevalent in urban environments (e.g., LiDAR sensors for autonomous vehicles), the need arises to find efficient ways to align large amounts of such 3D data, often in real-time. In this work, we propose a novel method for 3D point cloud registration refinement in an urban environment (e.g., between Terrestrial LiDAR Scans - TLS - and Airborne LiDAR Scans - ALS), assuming an initial coarse registration is available. The proposed method is based on estimation of the direction of gravity, wall detection, projection of the point clouds on a perpendicular horizontal plane, and conversion into 2D edge-maps. Then, two methods are considered for alignment between the 2D edge-maps: a 2D variant of the well-known ICP (Iterative Closest Point) algorithm, and Edge-Map Phase-Correlation (EMPC). We demonstrate the usefulness of the proposed methods for registration in this challenging task, where the 2D variant of ICP achieves a meaningful advantage over 3D ICP in terms of runtime, while maintaining comparable registration accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Motion Compensation for Forensic Analysis of Egocentric Video using Joint Stabilization and Tracking DC low current Hall effect measurements Examining Change Detection Methods For Hyperspectral Data Effect of Reverberation in Speech-based Emotion Recognition Traveling-Wave Ring Oscillator – Simulations and Prototype Measurements for a New Architecture for a Transmission Line Based Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1