{"title":"柔性作业车间调度问题的快速遗传算法","authors":"Marcin Cwiek, J. Nalepa","doi":"10.1145/2598394.2602280","DOIUrl":null,"url":null,"abstract":"This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fast genetic algorithm for the flexible job shop scheduling problem\",\"authors\":\"Marcin Cwiek, J. Nalepa\",\"doi\":\"10.1145/2598394.2602280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2602280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast genetic algorithm for the flexible job shop scheduling problem
This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.