柔性作业车间调度问题的快速遗传算法

Marcin Cwiek, J. Nalepa
{"title":"柔性作业车间调度问题的快速遗传算法","authors":"Marcin Cwiek, J. Nalepa","doi":"10.1145/2598394.2602280","DOIUrl":null,"url":null,"abstract":"This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fast genetic algorithm for the flexible job shop scheduling problem\",\"authors\":\"Marcin Cwiek, J. Nalepa\",\"doi\":\"10.1145/2598394.2602280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2602280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种求解柔性作业车间调度问题的快速遗传算法。FJSP是经典NP-hard作业车间调度问题的扩展。在此,我们将主动进度建设性交叉(ASCX)与广义顺序交叉(GOX)相结合。此外,我们还展示了如何在高低拟合选择方案中划分解的总体,以有效地指导搜索。初步的实验研究表明,该遗传算法具有较高的收敛能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast genetic algorithm for the flexible job shop scheduling problem
This paper presents a fast genetic algorithm (GA) for solving the flexible job shob scheduling problem (FJSP). The FJSP is an extension of a classical NP-hard job shop scheduling problem. Here, we combine the active schedule constructive crossover (ASCX) with the generalized order crossover (GOX). Also, we show how to divide a population of solutions in the high-low fit selection scheme in order to guide the search efficiently. An initial experimental study indicates high convergence capabilities of the proposed GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1