多通道裂糖菌pombe图像的自动表型分析

Yen-Jen Chen, Marc D. Green, Sarah A Sabatinos, S. Forsburg, Chun-Nan Hsu, Jyh-Ying Peng
{"title":"多通道裂糖菌pombe图像的自动表型分析","authors":"Yen-Jen Chen, Marc D. Green, Sarah A Sabatinos, S. Forsburg, Chun-Nan Hsu, Jyh-Ying Peng","doi":"10.1109/ISBB.2014.6820935","DOIUrl":null,"url":null,"abstract":"Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. However, performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of multiple images. We developed a high content analysis system to robustly segment transmitted illumination images, extract cell and nucleus boundaries, and quantitatively characterize the fluorescence within each compartment. A support vector machine (SVM) is trained to automatically judge if a cell is undergoing septation, and another two SVMs are trained to classify pombe cells into various phenotypes according to its cell shape and fluorescence signal profile. We applied this system to automatically calculate the percentages of cells of different phenotypes for 4000 S. pombe mutants.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic phenotyping of multi-channel Schizosaccharomyces pombe images\",\"authors\":\"Yen-Jen Chen, Marc D. Green, Sarah A Sabatinos, S. Forsburg, Chun-Nan Hsu, Jyh-Ying Peng\",\"doi\":\"10.1109/ISBB.2014.6820935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. However, performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of multiple images. We developed a high content analysis system to robustly segment transmitted illumination images, extract cell and nucleus boundaries, and quantitatively characterize the fluorescence within each compartment. A support vector machine (SVM) is trained to automatically judge if a cell is undergoing septation, and another two SVMs are trained to classify pombe cells into various phenotypes according to its cell shape and fluorescence signal profile. We applied this system to automatically calculate the percentages of cells of different phenotypes for 4000 S. pombe mutants.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

pombe Schizosaccharomyces pombe与人类共享许多基因和蛋白质,是染色体行为和DNA动力学的良好模型,可以通过观察荧光标记蛋白质在体内的行为来分析。然而,对这些蛋白质的变化进行全基因组筛选需要开发自动分析多个图像的方法。我们开发了一个高含量的分析系统,以鲁棒分割透射照明图像,提取细胞和细胞核边界,并定量表征每个隔室内的荧光。训练一台支持向量机(SVM)自动判断细胞是否处于分裂状态,训练两台支持向量机根据细胞形状和荧光信号特征将pombe细胞分为不同的表型。我们应用该系统自动计算了4000个S. pombe突变体不同表型细胞的百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic phenotyping of multi-channel Schizosaccharomyces pombe images
Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. However, performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of multiple images. We developed a high content analysis system to robustly segment transmitted illumination images, extract cell and nucleus boundaries, and quantitatively characterize the fluorescence within each compartment. A support vector machine (SVM) is trained to automatically judge if a cell is undergoing septation, and another two SVMs are trained to classify pombe cells into various phenotypes according to its cell shape and fluorescence signal profile. We applied this system to automatically calculate the percentages of cells of different phenotypes for 4000 S. pombe mutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stereoscopic laparoscopy using depth information from 3D model Analysis of the multiple ultrasound echoes for measurement of cortical bone thickness Smart cane: Instrumentation of a quad cane with audio-feedback monitoring system for partial weight-bearing support A low power high CMRR CMOS instrumentation amplifier for Bio-impedance Spectroscopy A novel approach for ECG data compression in healthcare monitoring system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1