基于类标签和属性关系的离散化技术分类

Hanan Elhilbawi, S. Eldawlatly, Hani M. K. Mahdi
{"title":"基于类标签和属性关系的离散化技术分类","authors":"Hanan Elhilbawi, S. Eldawlatly, Hani M. K. Mahdi","doi":"10.1109/ICCES48960.2019.9068185","DOIUrl":null,"url":null,"abstract":"Discretizing continuous attributes is one essential and important data preprocessing step in data mining. Various data mining techniques are designed to be applied to discrete attributes. There have been tremendous efforts to propose discretization techniques with different characteristics. However, a clear pathway that can guide the choice of the needed discretization technique for different types of datasets is lacking. This paper proposes a taxonomy based on the existence of class information and relationship between attributes in the analyzed dataset. We review different discretization techniques classified according to the proposed taxonomy. The proposed taxonomy emphasizes the advantages and disadvantages of each discretization technique to be able theoretically to find a suitable discretization technique for a particular dataset.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Taxonomy of Discretization Techniques based on Class Labels and Attributes' Relationship\",\"authors\":\"Hanan Elhilbawi, S. Eldawlatly, Hani M. K. Mahdi\",\"doi\":\"10.1109/ICCES48960.2019.9068185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discretizing continuous attributes is one essential and important data preprocessing step in data mining. Various data mining techniques are designed to be applied to discrete attributes. There have been tremendous efforts to propose discretization techniques with different characteristics. However, a clear pathway that can guide the choice of the needed discretization technique for different types of datasets is lacking. This paper proposes a taxonomy based on the existence of class information and relationship between attributes in the analyzed dataset. We review different discretization techniques classified according to the proposed taxonomy. The proposed taxonomy emphasizes the advantages and disadvantages of each discretization technique to be able theoretically to find a suitable discretization technique for a particular dataset.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

离散化连续属性是数据挖掘中一个重要的数据预处理步骤。各种数据挖掘技术被设计用于离散属性。为了提出具有不同特性的离散化技术,人们付出了巨大的努力。然而,缺乏一个明确的途径,可以指导选择不同类型的数据集所需的离散化技术。本文提出了一种基于类信息存在性和属性间关系的分类方法。我们回顾了根据所提出的分类分类的不同离散化技术。提出的分类法强调了每种离散化技术的优点和缺点,以便能够从理论上找到适合特定数据集的离散化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Taxonomy of Discretization Techniques based on Class Labels and Attributes' Relationship
Discretizing continuous attributes is one essential and important data preprocessing step in data mining. Various data mining techniques are designed to be applied to discrete attributes. There have been tremendous efforts to propose discretization techniques with different characteristics. However, a clear pathway that can guide the choice of the needed discretization technique for different types of datasets is lacking. This paper proposes a taxonomy based on the existence of class information and relationship between attributes in the analyzed dataset. We review different discretization techniques classified according to the proposed taxonomy. The proposed taxonomy emphasizes the advantages and disadvantages of each discretization technique to be able theoretically to find a suitable discretization technique for a particular dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1