基于云规模网关CPU峰值的两阶段重型攻击检测系统

Jianyuan Lu, Tian Pan, Shan He, Mao Miao, Guangzhe Zhou, Yining Qi, Biao Lyu, Shunmin Zhu
{"title":"基于云规模网关CPU峰值的两阶段重型攻击检测系统","authors":"Jianyuan Lu, Tian Pan, Shan He, Mao Miao, Guangzhe Zhou, Yining Qi, Biao Lyu, Shunmin Zhu","doi":"10.1109/ICDCS51616.2021.00041","DOIUrl":null,"url":null,"abstract":"The cloud network provides sharing resources for tens of thousands of tenants to achieve economics of scale. However, heavy hitters caused by a single tenant will probably interfere with the processing of the cloud gateways, undermining the predictable performance expected by other cloud tenants. To prevent it, heavy hitter detection becomes a key concern at the performance-critical cloud gateways but faces the dilemma between fine granularity and low overhead. In this work, we present CloudSentry, a scalable two-stage heavy hitter detection system dedicated to multi-tenant cloud gateways against such a dilemma. CloudSentry contains a lightweight coarse-grained detection running 24/7 to localize infrequent CPU spikes. Then it invokes a fine-grained detection to precisely dump and analyze the potential heavy-hitter packets at the CPU spikes. After that, a more comprehensive analysis is conducted to associate heavy hitters with the cloud service scenarios and invoke a corresponding backpressure procedure. CloudSentry significantly reduces memory, computation and storage overhead compared with existing approaches. Additionally, it has been deployed world-wide in Alibaba Cloud for over one year, with rich deployment experiences. In a gateway cluster under an average traffic throughput of of 251Gbps, CloudSentry consumes only a fraction of 2%-5% CPU utilization with 8KB run-time memory, producing only 10MB heavy hitter logs during one month.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Two-Stage Heavy Hitter Detection System Based on CPU Spikes at Cloud-Scale Gateways\",\"authors\":\"Jianyuan Lu, Tian Pan, Shan He, Mao Miao, Guangzhe Zhou, Yining Qi, Biao Lyu, Shunmin Zhu\",\"doi\":\"10.1109/ICDCS51616.2021.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cloud network provides sharing resources for tens of thousands of tenants to achieve economics of scale. However, heavy hitters caused by a single tenant will probably interfere with the processing of the cloud gateways, undermining the predictable performance expected by other cloud tenants. To prevent it, heavy hitter detection becomes a key concern at the performance-critical cloud gateways but faces the dilemma between fine granularity and low overhead. In this work, we present CloudSentry, a scalable two-stage heavy hitter detection system dedicated to multi-tenant cloud gateways against such a dilemma. CloudSentry contains a lightweight coarse-grained detection running 24/7 to localize infrequent CPU spikes. Then it invokes a fine-grained detection to precisely dump and analyze the potential heavy-hitter packets at the CPU spikes. After that, a more comprehensive analysis is conducted to associate heavy hitters with the cloud service scenarios and invoke a corresponding backpressure procedure. CloudSentry significantly reduces memory, computation and storage overhead compared with existing approaches. Additionally, it has been deployed world-wide in Alibaba Cloud for over one year, with rich deployment experiences. In a gateway cluster under an average traffic throughput of of 251Gbps, CloudSentry consumes only a fraction of 2%-5% CPU utilization with 8KB run-time memory, producing only 10MB heavy hitter logs during one month.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"311 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云网络为数万个租户提供共享资源,实现规模经济。但是,单个租户造成的严重影响可能会干扰云网关的处理,从而破坏其他云租户预期的可预测性能。为了防止这种情况,重磅攻击检测成为性能关键型云网关的一个关键问题,但它面临着细粒度和低开销之间的两难境地。在这项工作中,我们提出了CloudSentry,这是一个可扩展的两阶段重型攻击检测系统,专门用于多租户云网关,以应对这种困境。CloudSentry包含一个轻量级的粗粒度检测,全天候运行,用于定位不常见的CPU峰值。然后,它调用细粒度检测来精确地转储和分析CPU峰值处潜在的重磅数据包。之后,进行更全面的分析,将重磅数据与云服务场景关联起来,并调用相应的背压过程。与现有方法相比,CloudSentry显著降低了内存、计算和存储开销。此外,它已在阿里云全球部署一年多,具有丰富的部署经验。在平均流量吞吐量为251Gbps的网关集群中,CloudSentry只消耗2%-5%的CPU利用率,运行时内存为8KB,在一个月内仅产生10MB的重命中日志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two-Stage Heavy Hitter Detection System Based on CPU Spikes at Cloud-Scale Gateways
The cloud network provides sharing resources for tens of thousands of tenants to achieve economics of scale. However, heavy hitters caused by a single tenant will probably interfere with the processing of the cloud gateways, undermining the predictable performance expected by other cloud tenants. To prevent it, heavy hitter detection becomes a key concern at the performance-critical cloud gateways but faces the dilemma between fine granularity and low overhead. In this work, we present CloudSentry, a scalable two-stage heavy hitter detection system dedicated to multi-tenant cloud gateways against such a dilemma. CloudSentry contains a lightweight coarse-grained detection running 24/7 to localize infrequent CPU spikes. Then it invokes a fine-grained detection to precisely dump and analyze the potential heavy-hitter packets at the CPU spikes. After that, a more comprehensive analysis is conducted to associate heavy hitters with the cloud service scenarios and invoke a corresponding backpressure procedure. CloudSentry significantly reduces memory, computation and storage overhead compared with existing approaches. Additionally, it has been deployed world-wide in Alibaba Cloud for over one year, with rich deployment experiences. In a gateway cluster under an average traffic throughput of of 251Gbps, CloudSentry consumes only a fraction of 2%-5% CPU utilization with 8KB run-time memory, producing only 10MB heavy hitter logs during one month.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Location Privacy Attacks and Defense on Point-of-interest Aggregates Hand-Key: Leveraging Multiple Hand Biometrics for Attack-Resilient User Authentication Using COTS RFID Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning The Vertical Cuckoo Filters: A Family of Insertion-friendly Sketches for Online Applications Dyconits: Scaling Minecraft-like Services through Dynamically Managed Inconsistency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1