基于深度学习架构的雷达辐射源识别

Hongbo Li, Wei Jing, Yang Bai
{"title":"基于深度学习架构的雷达辐射源识别","authors":"Hongbo Li, Wei Jing, Yang Bai","doi":"10.1109/RADAR.2016.8059512","DOIUrl":null,"url":null,"abstract":"With the increasing complexity of electromagnetic environment and the rising of operating patterns of new radars, emitter recognition is becoming more and more difficult. This paper presents a deep learning architecture (DLA) based on the deep belief network (DBN) and logistic regression (LR) for radar emitter recognition. A multilayer structure of DBN is established to learn emitter feature, and LR is devoted to identify a specific type of radar. Compared experiments with conventional methods are conducted, and the results show that the proposed model outperforms other existing techniques. Moreover, simulation experiments in different noise and loss pulse environment show that DLA is effective and robust in solving problems of radar emitter recognition.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Radar emitter recognition based on deep learning architecture\",\"authors\":\"Hongbo Li, Wei Jing, Yang Bai\",\"doi\":\"10.1109/RADAR.2016.8059512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing complexity of electromagnetic environment and the rising of operating patterns of new radars, emitter recognition is becoming more and more difficult. This paper presents a deep learning architecture (DLA) based on the deep belief network (DBN) and logistic regression (LR) for radar emitter recognition. A multilayer structure of DBN is established to learn emitter feature, and LR is devoted to identify a specific type of radar. Compared experiments with conventional methods are conducted, and the results show that the proposed model outperforms other existing techniques. Moreover, simulation experiments in different noise and loss pulse environment show that DLA is effective and robust in solving problems of radar emitter recognition.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着电磁环境的日益复杂和新型雷达工作方式的不断增加,对辐射源的识别变得越来越困难。提出了一种基于深度信念网络(DBN)和逻辑回归(LR)的雷达辐射源识别深度学习架构(DLA)。建立了一种多层DBN结构来学习发射器特征,LR用于识别特定类型的雷达。与传统方法进行了对比实验,结果表明该模型优于其他现有方法。此外,在不同噪声和损耗脉冲环境下的仿真实验表明,该算法在解决雷达辐射源识别问题上具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radar emitter recognition based on deep learning architecture
With the increasing complexity of electromagnetic environment and the rising of operating patterns of new radars, emitter recognition is becoming more and more difficult. This paper presents a deep learning architecture (DLA) based on the deep belief network (DBN) and logistic regression (LR) for radar emitter recognition. A multilayer structure of DBN is established to learn emitter feature, and LR is devoted to identify a specific type of radar. Compared experiments with conventional methods are conducted, and the results show that the proposed model outperforms other existing techniques. Moreover, simulation experiments in different noise and loss pulse environment show that DLA is effective and robust in solving problems of radar emitter recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1