基于滑模的柔性连杆臂位置控制

A. Arisoy, M. Gokasan, O. Bogosyan
{"title":"基于滑模的柔性连杆臂位置控制","authors":"A. Arisoy, M. Gokasan, O. Bogosyan","doi":"10.1109/EPEPEMC.2006.4778434","DOIUrl":null,"url":null,"abstract":"In this study, sliding mode (SM) based partial feedback linearization (PFL) control method is applied to a single flexible link arm (FLA) with payload. A sliding mode based partial feedback linearization controller is designed to achieve set point precision positioning control for a FLA. Flexible robot arms have structural flexibilities and resulting high number of passive degrees-of-freedom. They cannot be decoupled due to the highly nonlinear structure. Since exact feedback linearization control methods cannot be applied to these systems, partial feedback linearization control methods are suitable for the flexible systems. For set-point control, sliding mode control based approach is applied to achieve the precise tip position of a single FLA. To do this, active and passive dynamics of the system are included in a new output equation and appropriate sliding manifold is defined using this new output equation. Proposed control algorithm is compared with PD based collocated PFL control method. Then, the performance of both controllers for the tip-position precision of a single FLA is demonstrated by simulations. Numerical simulations of a single FLA demonstrate that the SM based approach gives rise to a better performance than the PD based one.","PeriodicalId":401288,"journal":{"name":"2006 12th International Power Electronics and Motion Control Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sliding Mode Based Position Control of a Flexible-Link Arm\",\"authors\":\"A. Arisoy, M. Gokasan, O. Bogosyan\",\"doi\":\"10.1109/EPEPEMC.2006.4778434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, sliding mode (SM) based partial feedback linearization (PFL) control method is applied to a single flexible link arm (FLA) with payload. A sliding mode based partial feedback linearization controller is designed to achieve set point precision positioning control for a FLA. Flexible robot arms have structural flexibilities and resulting high number of passive degrees-of-freedom. They cannot be decoupled due to the highly nonlinear structure. Since exact feedback linearization control methods cannot be applied to these systems, partial feedback linearization control methods are suitable for the flexible systems. For set-point control, sliding mode control based approach is applied to achieve the precise tip position of a single FLA. To do this, active and passive dynamics of the system are included in a new output equation and appropriate sliding manifold is defined using this new output equation. Proposed control algorithm is compared with PD based collocated PFL control method. Then, the performance of both controllers for the tip-position precision of a single FLA is demonstrated by simulations. Numerical simulations of a single FLA demonstrate that the SM based approach gives rise to a better performance than the PD based one.\",\"PeriodicalId\":401288,\"journal\":{\"name\":\"2006 12th International Power Electronics and Motion Control Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2006.4778434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2006.4778434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文将滑模部分反馈线性化(PFL)控制方法应用于带载荷的单柔性连杆臂。设计了一种基于滑模的部分反馈线性化控制器,实现了FLA的设定点精确定位控制。柔性机械臂具有结构上的灵活性和由此产生的高被动自由度。由于结构高度非线性,它们不能解耦。由于精确反馈线性化控制方法不能应用于这些系统,部分反馈线性化控制方法适用于柔性系统。对于设定点控制,采用基于滑模控制的方法来实现单个FLA的精确尖端位置。为此,将系统的主动和被动动力学包含在一个新的输出方程中,并利用该输出方程定义适当的滑动流形。将所提出的控制算法与基于PD的并联PFL控制方法进行了比较。然后,通过仿真验证了两种控制器对单个FLA尖端位置精度的影响。单个FLA的数值模拟表明,基于SM的方法比基于PD的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sliding Mode Based Position Control of a Flexible-Link Arm
In this study, sliding mode (SM) based partial feedback linearization (PFL) control method is applied to a single flexible link arm (FLA) with payload. A sliding mode based partial feedback linearization controller is designed to achieve set point precision positioning control for a FLA. Flexible robot arms have structural flexibilities and resulting high number of passive degrees-of-freedom. They cannot be decoupled due to the highly nonlinear structure. Since exact feedback linearization control methods cannot be applied to these systems, partial feedback linearization control methods are suitable for the flexible systems. For set-point control, sliding mode control based approach is applied to achieve the precise tip position of a single FLA. To do this, active and passive dynamics of the system are included in a new output equation and appropriate sliding manifold is defined using this new output equation. Proposed control algorithm is compared with PD based collocated PFL control method. Then, the performance of both controllers for the tip-position precision of a single FLA is demonstrated by simulations. Numerical simulations of a single FLA demonstrate that the SM based approach gives rise to a better performance than the PD based one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avoiding Drawn Arcs Between Sliding Contacts of Commutators On-Line Electrical Quality Improvement of a Single Phase Boost Rectifier with Fuzzy Controller and Experimental Designs Improvement of a Servo Motor Design Including Optimization and Cost Analysis Design Aspects for Power MOSFET Components in Automotive Electronics A new Sensorless Control for the Switched Reluctance Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1