一种新的多假设滤波器的假设分割方法实现

Enis Bayramoglu, Ole Ravn, N. Andersen
{"title":"一种新的多假设滤波器的假设分割方法实现","authors":"Enis Bayramoglu, Ole Ravn, N. Andersen","doi":"10.1109/ICCA.2013.6564951","DOIUrl":null,"url":null,"abstract":"The paper presents a multi-hypothesis filter library featuring a novel method for splitting Gaussians into ones with smaller variances. The library is written in C++ for high performance and the source code is open and free1. The multi-hypothesis filters commonly approximate the distribution transformations better, if the covariances of the individual hypotheses are sufficiently small. We propose a look-up table based method to calculate a set of Gaussian hypotheses approximating a wider Gaussian in order to improve the filter approximation. Python bindings for the library are also provided for fast prototyping.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel hypothesis splitting method implementation for multi-hypothesis filters\",\"authors\":\"Enis Bayramoglu, Ole Ravn, N. Andersen\",\"doi\":\"10.1109/ICCA.2013.6564951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a multi-hypothesis filter library featuring a novel method for splitting Gaussians into ones with smaller variances. The library is written in C++ for high performance and the source code is open and free1. The multi-hypothesis filters commonly approximate the distribution transformations better, if the covariances of the individual hypotheses are sufficiently small. We propose a look-up table based method to calculate a set of Gaussian hypotheses approximating a wider Gaussian in order to improve the filter approximation. Python bindings for the library are also provided for fast prototyping.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6564951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一个多假设滤波器库,该库采用了一种新颖的方法将高斯分布分解为方差较小的高斯分布。该库是用c++编写的,以获得高性能,源代码是开放和免费的。如果单个假设的协方差足够小,多假设滤波器通常能更好地近似分布变换。为了改进滤波近似,我们提出了一种基于查找表的方法来计算一组近似于更宽高斯的高斯假设。库的Python绑定也提供了快速原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel hypothesis splitting method implementation for multi-hypothesis filters
The paper presents a multi-hypothesis filter library featuring a novel method for splitting Gaussians into ones with smaller variances. The library is written in C++ for high performance and the source code is open and free1. The multi-hypothesis filters commonly approximate the distribution transformations better, if the covariances of the individual hypotheses are sufficiently small. We propose a look-up table based method to calculate a set of Gaussian hypotheses approximating a wider Gaussian in order to improve the filter approximation. Python bindings for the library are also provided for fast prototyping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1