{"title":"一种新型混合信号集成技术中的衬底噪声抑制","authors":"H. Sharifi, S. Mohammadi","doi":"10.1109/SMIC.2008.43","DOIUrl":null,"url":null,"abstract":"In this paper, a new mixed-signal substrate noise rejection technique is proposed and implemented using a recently-developed self-aligned wafer-level integration technology (SAWLIT). In this technique, chips with any thickness can be used. Using sidewall metallization of cavities in an interposer substrate, truly grounded Faraday-cage structures are realized. The simulation and measurement results show that a high-resistivity silicon substrate can suppress the substrate noise by more than 60dB for the frequency of less than 1 GHz. For the frequency range of 1GHz to 25GHz, using the grounded Faraday-cage, the isolation can be improved to less than -60dB. For the low-resistivity silicon substrate, the substrate coupling is worse than the high-resistivity Si, however, using sidewall metallization, the isolation can be improved to below -60dB. To our knowledge, these are the best values reported for isolation improvement of thick silicon substrates and chips using a very thin layer of metallization.","PeriodicalId":350325,"journal":{"name":"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Substrate Noise Rejection in a New Mixed-Signal Integration Technology\",\"authors\":\"H. Sharifi, S. Mohammadi\",\"doi\":\"10.1109/SMIC.2008.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new mixed-signal substrate noise rejection technique is proposed and implemented using a recently-developed self-aligned wafer-level integration technology (SAWLIT). In this technique, chips with any thickness can be used. Using sidewall metallization of cavities in an interposer substrate, truly grounded Faraday-cage structures are realized. The simulation and measurement results show that a high-resistivity silicon substrate can suppress the substrate noise by more than 60dB for the frequency of less than 1 GHz. For the frequency range of 1GHz to 25GHz, using the grounded Faraday-cage, the isolation can be improved to less than -60dB. For the low-resistivity silicon substrate, the substrate coupling is worse than the high-resistivity Si, however, using sidewall metallization, the isolation can be improved to below -60dB. To our knowledge, these are the best values reported for isolation improvement of thick silicon substrates and chips using a very thin layer of metallization.\",\"PeriodicalId\":350325,\"journal\":{\"name\":\"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMIC.2008.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2008.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Substrate Noise Rejection in a New Mixed-Signal Integration Technology
In this paper, a new mixed-signal substrate noise rejection technique is proposed and implemented using a recently-developed self-aligned wafer-level integration technology (SAWLIT). In this technique, chips with any thickness can be used. Using sidewall metallization of cavities in an interposer substrate, truly grounded Faraday-cage structures are realized. The simulation and measurement results show that a high-resistivity silicon substrate can suppress the substrate noise by more than 60dB for the frequency of less than 1 GHz. For the frequency range of 1GHz to 25GHz, using the grounded Faraday-cage, the isolation can be improved to less than -60dB. For the low-resistivity silicon substrate, the substrate coupling is worse than the high-resistivity Si, however, using sidewall metallization, the isolation can be improved to below -60dB. To our knowledge, these are the best values reported for isolation improvement of thick silicon substrates and chips using a very thin layer of metallization.