扩展窄带加权MultiFLIP两相液体模拟

Luan Lyu, Wei Cao, E. Wu, Zhixin Yang
{"title":"扩展窄带加权MultiFLIP两相液体模拟","authors":"Luan Lyu, Wei Cao, E. Wu, Zhixin Yang","doi":"10.1145/3359997.3365685","DOIUrl":null,"url":null,"abstract":"Physically-based fluid simulation has been studied for many years in computer graphics. MultiFLIP is a powerful method to simulate two-phase liquid phenomena such as bubbles and the “glugging” effect of water pouring, which cannot be produced by the traditional Fluid Implicit Particle (FLIP) method. In contrast to FLIP where only the liquid phase is involved, MultiFLIP samples two respective grid velocities for both gas and liquid volumes. However, MultiFLIP produces some abnormal phenomena such as small liquid droplets getting carried around by gas. The abnormality is in fact produced by the reason that MultiFLIP uses the same weights for both gas and liquid when blending the velocities near the interface for divergence-free projection. To address this problem, we present a novel velocity coupling method, which uses different mass for gas and liquid particles when interpolating velocities of particles into the Eulerian grid. Besides, we apply a transition function to MultiFLIP method so that the two-phase liquid simulation can switch between a particle-based simulation and a grid-based simulation, which aims to reduce the number of particles and smooth the liquid-gas interface in the calm areas. Experiments show that our techniques can conserve the kinetic energy and tiny details of gas-liquid interface better, as well as reduce the number of gas and liquid particles.","PeriodicalId":448139,"journal":{"name":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Narrow Band Weighted MultiFLIP for Two-Phase Liquid Simulation\",\"authors\":\"Luan Lyu, Wei Cao, E. Wu, Zhixin Yang\",\"doi\":\"10.1145/3359997.3365685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physically-based fluid simulation has been studied for many years in computer graphics. MultiFLIP is a powerful method to simulate two-phase liquid phenomena such as bubbles and the “glugging” effect of water pouring, which cannot be produced by the traditional Fluid Implicit Particle (FLIP) method. In contrast to FLIP where only the liquid phase is involved, MultiFLIP samples two respective grid velocities for both gas and liquid volumes. However, MultiFLIP produces some abnormal phenomena such as small liquid droplets getting carried around by gas. The abnormality is in fact produced by the reason that MultiFLIP uses the same weights for both gas and liquid when blending the velocities near the interface for divergence-free projection. To address this problem, we present a novel velocity coupling method, which uses different mass for gas and liquid particles when interpolating velocities of particles into the Eulerian grid. Besides, we apply a transition function to MultiFLIP method so that the two-phase liquid simulation can switch between a particle-based simulation and a grid-based simulation, which aims to reduce the number of particles and smooth the liquid-gas interface in the calm areas. Experiments show that our techniques can conserve the kinetic energy and tiny details of gas-liquid interface better, as well as reduce the number of gas and liquid particles.\",\"PeriodicalId\":448139,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3359997.3365685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359997.3365685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于物理的流体模拟在计算机图形学中已经研究了很多年。MultiFLIP是一种强大的模拟两相液体现象的方法,如气泡和水的“灌胶”效应,这是传统的流体隐式粒子(FLIP)方法无法产生的。与只涉及液相的FLIP相比,MultiFLIP对气体和液体体积分别采样两个网格速度。然而,MultiFLIP会产生一些异常现象,例如小液滴被气体携带。这种异常实际上是由于MultiFLIP在混合界面附近的速度以进行无发散投影时,对气体和液体使用了相同的权重。为了解决这个问题,我们提出了一种新的速度耦合方法,该方法在欧拉网格中插值粒子的速度时,对气体和液体粒子使用不同的质量。此外,我们在MultiFLIP方法中引入过渡函数,使两相液体模拟可以在基于粒子的模拟和基于网格的模拟之间切换,从而减少粒子数量,平滑平静区域的液气界面。实验表明,该技术能较好地保存气液界面的动能和微小细节,并能减少气液粒子的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Narrow Band Weighted MultiFLIP for Two-Phase Liquid Simulation
Physically-based fluid simulation has been studied for many years in computer graphics. MultiFLIP is a powerful method to simulate two-phase liquid phenomena such as bubbles and the “glugging” effect of water pouring, which cannot be produced by the traditional Fluid Implicit Particle (FLIP) method. In contrast to FLIP where only the liquid phase is involved, MultiFLIP samples two respective grid velocities for both gas and liquid volumes. However, MultiFLIP produces some abnormal phenomena such as small liquid droplets getting carried around by gas. The abnormality is in fact produced by the reason that MultiFLIP uses the same weights for both gas and liquid when blending the velocities near the interface for divergence-free projection. To address this problem, we present a novel velocity coupling method, which uses different mass for gas and liquid particles when interpolating velocities of particles into the Eulerian grid. Besides, we apply a transition function to MultiFLIP method so that the two-phase liquid simulation can switch between a particle-based simulation and a grid-based simulation, which aims to reduce the number of particles and smooth the liquid-gas interface in the calm areas. Experiments show that our techniques can conserve the kinetic energy and tiny details of gas-liquid interface better, as well as reduce the number of gas and liquid particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing and Interacting with Hierarchical Menus in Immersive Augmented Reality An End-to-End Augmented Reality Solution to Support Aquaculture Farmers with Data Collection, Storage, and Analysis Immersive Analytics using Augmented Reality for Computational Fluid Dynamics Simulations eEyes – an Integrated Aid System for the Blind and People with Low Vision 3D Human Avatar Digitization from a Single Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1