刀具和工件在切削速度方向上的变形对加工动力学的影响

V. Zakovorotny, V. Gvindzhiliya, K. V. Kislov, D. Veremeev
{"title":"刀具和工件在切削速度方向上的变形对加工动力学的影响","authors":"V. Zakovorotny, V. Gvindzhiliya, K. V. Kislov, D. Veremeev","doi":"10.18698/0536-1044-2023-8-51-67","DOIUrl":null,"url":null,"abstract":"Numerous studies were devoted to studying the dynamic cutting system considered in combination of the tool and the workpiece sub-systems interacting through a dynamic connection formed by the machining process. Dynamic coupling is simulated by the cutting forces represented in the system state coordinates, which determines the system properties. Several models were proposed to describe the dynamic connection reflecting various experimentally observed effects and contributing to the self-excitation. Regenerative effect of the tool trace left on the workpiece at the previous revolution was considered. The regenerative effect was studied on the basis of assumption that the retarding argument in the forces description was remaining unchanged. The paper studies the regenerative effect influence on dynamic properties of the cutting process taking into account (unlike the known works) the retarded argument dependence on the tool deformation displacement. This could fundamentally change properties of the system under consideration in the unity of stability and the attracted formed deformation displacement sets (limit cycles, invariant tori and chaotic attractors). Results of the mathematical simulation are presented taking into account the regenerative self-excitation, where the retarded argument is the state coordinates function. Bifurcation diagrams of attracting sets of the deformation displacements are considered, and conditions for formation of their superlow-frequency components of the complex spatial-temporal structure are discussed. Research results are aimed at determining the machining conditions based on requirements for ensuring the specified quality of parts manufacturing using the longitudinal turning example.","PeriodicalId":198502,"journal":{"name":"Proceedings of Higher Educational Institutions. Маchine Building","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tool and workpiece deformation effect in the cutting speed direction on the machining dynamics\",\"authors\":\"V. Zakovorotny, V. Gvindzhiliya, K. V. Kislov, D. Veremeev\",\"doi\":\"10.18698/0536-1044-2023-8-51-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies were devoted to studying the dynamic cutting system considered in combination of the tool and the workpiece sub-systems interacting through a dynamic connection formed by the machining process. Dynamic coupling is simulated by the cutting forces represented in the system state coordinates, which determines the system properties. Several models were proposed to describe the dynamic connection reflecting various experimentally observed effects and contributing to the self-excitation. Regenerative effect of the tool trace left on the workpiece at the previous revolution was considered. The regenerative effect was studied on the basis of assumption that the retarding argument in the forces description was remaining unchanged. The paper studies the regenerative effect influence on dynamic properties of the cutting process taking into account (unlike the known works) the retarded argument dependence on the tool deformation displacement. This could fundamentally change properties of the system under consideration in the unity of stability and the attracted formed deformation displacement sets (limit cycles, invariant tori and chaotic attractors). Results of the mathematical simulation are presented taking into account the regenerative self-excitation, where the retarded argument is the state coordinates function. Bifurcation diagrams of attracting sets of the deformation displacements are considered, and conditions for formation of their superlow-frequency components of the complex spatial-temporal structure are discussed. Research results are aimed at determining the machining conditions based on requirements for ensuring the specified quality of parts manufacturing using the longitudinal turning example.\",\"PeriodicalId\":198502,\"journal\":{\"name\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0536-1044-2023-8-51-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Higher Educational Institutions. Маchine Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0536-1044-2023-8-51-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究致力于研究刀具和工件子系统通过加工过程形成的动态连接相互作用的动态切削系统。通过系统状态坐标中表示的切削力来模拟动态耦合,从而决定了系统的性能。提出了几个模型来描述动态连接,反映了各种实验观察到的效应,并有助于自激。考虑了刀具在前一次旋转时残留在工件上的轨迹的再生效应。在假设力描述中的延迟参数保持不变的基础上,研究了再生效应。本文研究了再生效应对切削过程动态特性的影响,考虑了(与已知作品不同的)刀具变形位移对延迟参数的依赖。这可以从根本上改变所考虑的系统在稳定性和吸引形成的变形位移集(极限环、不变环面和混沌吸引子)的统一中的性质。给出了考虑再生自激励的数学仿真结果,其中延迟参数为状态坐标函数。考虑了变形位移吸引集的分岔图,讨论了其在复杂时空结构中超低频分量的形成条件。研究结果旨在以纵向车削为例,在保证零件制造规定质量的基础上确定加工条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tool and workpiece deformation effect in the cutting speed direction on the machining dynamics
Numerous studies were devoted to studying the dynamic cutting system considered in combination of the tool and the workpiece sub-systems interacting through a dynamic connection formed by the machining process. Dynamic coupling is simulated by the cutting forces represented in the system state coordinates, which determines the system properties. Several models were proposed to describe the dynamic connection reflecting various experimentally observed effects and contributing to the self-excitation. Regenerative effect of the tool trace left on the workpiece at the previous revolution was considered. The regenerative effect was studied on the basis of assumption that the retarding argument in the forces description was remaining unchanged. The paper studies the regenerative effect influence on dynamic properties of the cutting process taking into account (unlike the known works) the retarded argument dependence on the tool deformation displacement. This could fundamentally change properties of the system under consideration in the unity of stability and the attracted formed deformation displacement sets (limit cycles, invariant tori and chaotic attractors). Results of the mathematical simulation are presented taking into account the regenerative self-excitation, where the retarded argument is the state coordinates function. Bifurcation diagrams of attracting sets of the deformation displacements are considered, and conditions for formation of their superlow-frequency components of the complex spatial-temporal structure are discussed. Research results are aimed at determining the machining conditions based on requirements for ensuring the specified quality of parts manufacturing using the longitudinal turning example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical evaluation of efficiency of a spherical ball gear operating in the multiplier mode Transient processes in an active vibration isolation system with the vibroactive forces inertial compensator Tool and workpiece deformation effect in the cutting speed direction on the machining dynamics Method for calculating parameters of the equidistant toroidal shell of a composite balloon Approximate determination of losses in characteristic velocity and increments in flight altitude of the multistage launch vehicle upper stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1