Abhishek Das, G. Memik, Joseph Zambreno, A. Choudhary
{"title":"检测/防止恶意硬件导致的内存总线信息泄露","authors":"Abhishek Das, G. Memik, Joseph Zambreno, A. Choudhary","doi":"10.1109/DATE.2010.5456930","DOIUrl":null,"url":null,"abstract":"An increasing concern amongst designers and integrators of military and defense-related systems is the underlying security of the individual microprocessor components that make up these systems. Malicious circuitry can be inserted and hidden at several stages of the design process through the use of third-party Intellectual Property (IP), design tools, and manufacturing facilities. Such hardware Trojan circuitry has been shown to be capable of shutting down the main processor after a random number of cycles, broadcasting sensitive information over the bus, and bypassing software authentication mechanisms. In this work, we propose an architecture that can prevent information leakage due to such malicious hardware. Our technique is based on guaranteeing certain behavior in the memory system, which will be checked at an external guardian core that “approves” each memory request. By sitting between off-chip memory and the main core, the guardian core can monitor bus activity and verify the compiler-defined correctness of all memory writes. Experimental results on a conventional x86 platform demonstrate that application binaries can be statically reinstrumented to coordinate with the guardian core to monitor off-chip access, resulting in less than 60% overhead for the majority of the studied benchmarks.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Detecting/preventing information leakage on the memory bus due to malicious hardware\",\"authors\":\"Abhishek Das, G. Memik, Joseph Zambreno, A. Choudhary\",\"doi\":\"10.1109/DATE.2010.5456930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing concern amongst designers and integrators of military and defense-related systems is the underlying security of the individual microprocessor components that make up these systems. Malicious circuitry can be inserted and hidden at several stages of the design process through the use of third-party Intellectual Property (IP), design tools, and manufacturing facilities. Such hardware Trojan circuitry has been shown to be capable of shutting down the main processor after a random number of cycles, broadcasting sensitive information over the bus, and bypassing software authentication mechanisms. In this work, we propose an architecture that can prevent information leakage due to such malicious hardware. Our technique is based on guaranteeing certain behavior in the memory system, which will be checked at an external guardian core that “approves” each memory request. By sitting between off-chip memory and the main core, the guardian core can monitor bus activity and verify the compiler-defined correctness of all memory writes. Experimental results on a conventional x86 platform demonstrate that application binaries can be statically reinstrumented to coordinate with the guardian core to monitor off-chip access, resulting in less than 60% overhead for the majority of the studied benchmarks.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5456930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5456930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting/preventing information leakage on the memory bus due to malicious hardware
An increasing concern amongst designers and integrators of military and defense-related systems is the underlying security of the individual microprocessor components that make up these systems. Malicious circuitry can be inserted and hidden at several stages of the design process through the use of third-party Intellectual Property (IP), design tools, and manufacturing facilities. Such hardware Trojan circuitry has been shown to be capable of shutting down the main processor after a random number of cycles, broadcasting sensitive information over the bus, and bypassing software authentication mechanisms. In this work, we propose an architecture that can prevent information leakage due to such malicious hardware. Our technique is based on guaranteeing certain behavior in the memory system, which will be checked at an external guardian core that “approves” each memory request. By sitting between off-chip memory and the main core, the guardian core can monitor bus activity and verify the compiler-defined correctness of all memory writes. Experimental results on a conventional x86 platform demonstrate that application binaries can be statically reinstrumented to coordinate with the guardian core to monitor off-chip access, resulting in less than 60% overhead for the majority of the studied benchmarks.