考虑可靠性约束的蚁群算法求解机组承诺问题

Al Afifi, S. Sarjiya, Yusuf Susilo Wijoyo
{"title":"考虑可靠性约束的蚁群算法求解机组承诺问题","authors":"Al Afifi, S. Sarjiya, Yusuf Susilo Wijoyo","doi":"10.22146/ijitee.49422","DOIUrl":null,"url":null,"abstract":"Unit Commitment or generator scheduling is one of complex combination issues aiming to obtain the cheapest generating power total costs. Ant Colony Optimization is proposed as a method to solve Unit Commitment issues because it has a better result convergence according to one of journals that reviews methods to solve Unit Commitment issues. Ant Colony Optimization modification into Nodal Ant Colony Optimization as well as addition of several elements are also conducted to overcome Ant Colony Optimization limitations in resolving Unit Commitment issues. Nodal Ant Colony Optimization simulations are then compared with Genetic Algorithm and Simulated Annealing methods which previously has similar simulations. Reliability index combination in a form of Loss of Load Probability and Expected Unserved Energy are also added as reliability constraints in the system. Comparison of three methods shows that Nodal Ant Colony Optimization is able to provide better results up to 0.08% cheaper than Genetic Algorithm or Simulated Annealing methods.","PeriodicalId":292390,"journal":{"name":"IJITEE (International Journal of Information Technology and Electrical Engineering)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ant Colony Optimization for Resolving Unit Commitment Issues by Considering Reliability Constraints\",\"authors\":\"Al Afifi, S. Sarjiya, Yusuf Susilo Wijoyo\",\"doi\":\"10.22146/ijitee.49422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unit Commitment or generator scheduling is one of complex combination issues aiming to obtain the cheapest generating power total costs. Ant Colony Optimization is proposed as a method to solve Unit Commitment issues because it has a better result convergence according to one of journals that reviews methods to solve Unit Commitment issues. Ant Colony Optimization modification into Nodal Ant Colony Optimization as well as addition of several elements are also conducted to overcome Ant Colony Optimization limitations in resolving Unit Commitment issues. Nodal Ant Colony Optimization simulations are then compared with Genetic Algorithm and Simulated Annealing methods which previously has similar simulations. Reliability index combination in a form of Loss of Load Probability and Expected Unserved Energy are also added as reliability constraints in the system. Comparison of three methods shows that Nodal Ant Colony Optimization is able to provide better results up to 0.08% cheaper than Genetic Algorithm or Simulated Annealing methods.\",\"PeriodicalId\":292390,\"journal\":{\"name\":\"IJITEE (International Journal of Information Technology and Electrical Engineering)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJITEE (International Journal of Information Technology and Electrical Engineering)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijitee.49422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJITEE (International Journal of Information Technology and Electrical Engineering)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijitee.49422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机组承诺或发电机组调度是一个复杂的组合问题,其目标是获得最便宜的发电总成本。蚁群优化算法是一种求解单元承诺问题的方法,根据一篇综述单元承诺问题求解方法的期刊,蚁群优化算法具有较好的收敛性。为了克服蚁群优化算法在解决机组承诺问题上的局限性,将蚁群优化算法修改为节点蚁群优化算法,并增加了一些元素。然后将节点蚁群优化算法的模拟与遗传算法和模拟退火方法进行了比较。并在系统中加入了以负荷损失概率和期望未服务能量为形式的可靠性指标组合作为可靠性约束。三种方法的比较表明,节点蚁群优化能够提供更好的结果,比遗传算法或模拟退火方法的成本低0.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ant Colony Optimization for Resolving Unit Commitment Issues by Considering Reliability Constraints
Unit Commitment or generator scheduling is one of complex combination issues aiming to obtain the cheapest generating power total costs. Ant Colony Optimization is proposed as a method to solve Unit Commitment issues because it has a better result convergence according to one of journals that reviews methods to solve Unit Commitment issues. Ant Colony Optimization modification into Nodal Ant Colony Optimization as well as addition of several elements are also conducted to overcome Ant Colony Optimization limitations in resolving Unit Commitment issues. Nodal Ant Colony Optimization simulations are then compared with Genetic Algorithm and Simulated Annealing methods which previously has similar simulations. Reliability index combination in a form of Loss of Load Probability and Expected Unserved Energy are also added as reliability constraints in the system. Comparison of three methods shows that Nodal Ant Colony Optimization is able to provide better results up to 0.08% cheaper than Genetic Algorithm or Simulated Annealing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eye Blink Classification for Assisting Disability to Communicate Using Bagging and Boosting Product Recommendation Based on Eye Tracking Data Using Fixation Duration Optimal Capacity and Location Wind Turbine to Minimize Power Losses Using NSGA-II Factors Affecting Collaboration Portal Effectiveness of the Audit Board of Indonesia Piezoelectric Energy Harvester for IoT Sensor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1