一种有效的纹理谱描述符

Xiaosheng Wu, Junding Sun
{"title":"一种有效的纹理谱描述符","authors":"Xiaosheng Wu, Junding Sun","doi":"10.1109/IAS.2009.126","DOIUrl":null,"url":null,"abstract":"The center-symmetric local binary pattern (CS-LBP) is an effective extension to local binary pattern (LBP) operator. However, it discards some important texture information because of the ignorance of the center pixel and is hard to choose a threshold for recognizing the flat area. A novel improved CS-LBP operator, named ICS-LBP, is proposed in this paper. The new operator classifies the local pattern based on the relativity of the center pixel and the center-symmetric pixels instead of the gray value differences between the center-symmetric pixels as CS-LBP, which can fully extract the texture information discarded by CS-LBP descriptor. Comparisons are given among the three methods and the experimental results show the performance improvement of the new descriptor.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An Effective Texture Spectrum Descriptor\",\"authors\":\"Xiaosheng Wu, Junding Sun\",\"doi\":\"10.1109/IAS.2009.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The center-symmetric local binary pattern (CS-LBP) is an effective extension to local binary pattern (LBP) operator. However, it discards some important texture information because of the ignorance of the center pixel and is hard to choose a threshold for recognizing the flat area. A novel improved CS-LBP operator, named ICS-LBP, is proposed in this paper. The new operator classifies the local pattern based on the relativity of the center pixel and the center-symmetric pixels instead of the gray value differences between the center-symmetric pixels as CS-LBP, which can fully extract the texture information discarded by CS-LBP descriptor. Comparisons are given among the three methods and the experimental results show the performance improvement of the new descriptor.\",\"PeriodicalId\":240354,\"journal\":{\"name\":\"2009 Fifth International Conference on Information Assurance and Security\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Information Assurance and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

中心对称局部二元模式(CS-LBP)是局部二元模式(LBP)算子的有效扩展。然而,由于忽略了中心像素,它丢弃了一些重要的纹理信息,并且难以选择识别平坦区域的阈值。提出了一种新的改进CS-LBP算子,即ICS-LBP算子。该算子基于中心像素与中心对称像素之间的相关性对局部模式进行分类,而不是像CS-LBP那样基于中心对称像素之间的灰度值差异对局部模式进行分类,可以充分提取CS-LBP描述符丢弃的纹理信息。对三种方法进行了比较,实验结果表明新描述符的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Texture Spectrum Descriptor
The center-symmetric local binary pattern (CS-LBP) is an effective extension to local binary pattern (LBP) operator. However, it discards some important texture information because of the ignorance of the center pixel and is hard to choose a threshold for recognizing the flat area. A novel improved CS-LBP operator, named ICS-LBP, is proposed in this paper. The new operator classifies the local pattern based on the relativity of the center pixel and the center-symmetric pixels instead of the gray value differences between the center-symmetric pixels as CS-LBP, which can fully extract the texture information discarded by CS-LBP descriptor. Comparisons are given among the three methods and the experimental results show the performance improvement of the new descriptor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Joint Multiscale Algorithm with Auto-adapted Threshold for Image Denoising E-government Security Management: Key Factors and Countermeasure Security Threats and Countermeasures for Intra-vehicle Networks 2-Level-Wavelet-Based License Plate Edge Detection Proxy Re-encryption Scheme Based on SK Identity Based Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1