一种改进光场压缩的MV-HEVC随机分层扩展

Mansi Sharma, Gowtham Ragavan
{"title":"一种改进光场压缩的MV-HEVC随机分层扩展","authors":"Mansi Sharma, Gowtham Ragavan","doi":"10.1109/IC3D48390.2019.8975905","DOIUrl":null,"url":null,"abstract":"This paper presents a novel scheme for light field compression based on a randomize hierarchical multi-view extension of high efficiency video coding (dubbed as RH-MVHEVC). Specifically, a light field data are arranged as a multiple pseudo-temporal video sequences which are efficiently compressed with MV-HEVC encoder, following an integrated random coding technique and hierarchical prediction scheme. The critical advantage of proposed RH-MVHEVC scheme is that it utilizes not just a temporal and inter-view prediction, but efficiently exploits the strong intrinsic similarities within each sub-aperture image and among neighboring sub-aperture images in both horizontal and vertical directions. Experimental results consistently outperform the state-of-the-art compression methods on benchmark ICME 2016 and ICIP 2017 grand challenge data sets. It achieves an average up to 33.803% BD-rate reduction and 1.7978 dB BD-PSNR improvement compared with an advanced JEM video encoder, and an average 20.4156% BD-rate reduction and 2.0644 dB BD-PSNR improvement compared with a latest image-based JEM-anchor coding scheme.","PeriodicalId":344706,"journal":{"name":"2019 International Conference on 3D Immersion (IC3D)","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Randomize Hierarchical Extension of MV-HEVC for Improved Light Field Compression\",\"authors\":\"Mansi Sharma, Gowtham Ragavan\",\"doi\":\"10.1109/IC3D48390.2019.8975905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel scheme for light field compression based on a randomize hierarchical multi-view extension of high efficiency video coding (dubbed as RH-MVHEVC). Specifically, a light field data are arranged as a multiple pseudo-temporal video sequences which are efficiently compressed with MV-HEVC encoder, following an integrated random coding technique and hierarchical prediction scheme. The critical advantage of proposed RH-MVHEVC scheme is that it utilizes not just a temporal and inter-view prediction, but efficiently exploits the strong intrinsic similarities within each sub-aperture image and among neighboring sub-aperture images in both horizontal and vertical directions. Experimental results consistently outperform the state-of-the-art compression methods on benchmark ICME 2016 and ICIP 2017 grand challenge data sets. It achieves an average up to 33.803% BD-rate reduction and 1.7978 dB BD-PSNR improvement compared with an advanced JEM video encoder, and an average 20.4156% BD-rate reduction and 2.0644 dB BD-PSNR improvement compared with a latest image-based JEM-anchor coding scheme.\",\"PeriodicalId\":344706,\"journal\":{\"name\":\"2019 International Conference on 3D Immersion (IC3D)\",\"volume\":\"323 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on 3D Immersion (IC3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3D48390.2019.8975905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D48390.2019.8975905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于随机分层多视点扩展的高效视频编码光场压缩新方案(RH-MVHEVC)。具体而言,采用随机编码和分层预测相结合的方法,将光场数据排列成多个伪时序视频序列,并利用MV-HEVC编码器进行高效压缩。所提出的RH-MVHEVC方案的关键优势在于,它不仅利用了时间和视场预测,而且有效地利用了每个子孔径图像之间以及相邻子孔径图像在水平和垂直方向上的强内在相似性。在基准ICME 2016和ICIP 2017大挑战数据集上,实验结果始终优于最先进的压缩方法。与先进的JEM视频编码器相比,该方案平均可实现高达33.803%的BD-rate降低和1.7978 dB的BD-PSNR改善;与最新的基于图像的JEM锚定编码方案相比,该方案平均可实现高达20.4156%的BD-rate降低和2.0644 dB的BD-PSNR改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Randomize Hierarchical Extension of MV-HEVC for Improved Light Field Compression
This paper presents a novel scheme for light field compression based on a randomize hierarchical multi-view extension of high efficiency video coding (dubbed as RH-MVHEVC). Specifically, a light field data are arranged as a multiple pseudo-temporal video sequences which are efficiently compressed with MV-HEVC encoder, following an integrated random coding technique and hierarchical prediction scheme. The critical advantage of proposed RH-MVHEVC scheme is that it utilizes not just a temporal and inter-view prediction, but efficiently exploits the strong intrinsic similarities within each sub-aperture image and among neighboring sub-aperture images in both horizontal and vertical directions. Experimental results consistently outperform the state-of-the-art compression methods on benchmark ICME 2016 and ICIP 2017 grand challenge data sets. It achieves an average up to 33.803% BD-rate reduction and 1.7978 dB BD-PSNR improvement compared with an advanced JEM video encoder, and an average 20.4156% BD-rate reduction and 2.0644 dB BD-PSNR improvement compared with a latest image-based JEM-anchor coding scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistent Long Sequences Deep Faces A Novel Randomize Hierarchical Extension of MV-HEVC for Improved Light Field Compression A Novel Algebaric Variety Based Model for High Quality Free-Viewpoint View Synthesis on a Krylov Subspace Relating Eye Dominance to Neurochemistry in the Human Visual Cortex Using Ultra High Field 7-Tesla MR Spectroscopy Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1