{"title":"利用生态界面设计对提供塔台空中交通管制的增强现实工具进行评估","authors":"M. Ellejmi, S. Bagassi, A. Persiani","doi":"10.2514/6.2018-2939","DOIUrl":null,"url":null,"abstract":"One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project “Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision” (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies.","PeriodicalId":326346,"journal":{"name":"2018 Modeling and Simulation Technologies Conference","volume":"326 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluation of Augmented Reality Tools for the provision of Tower Air Traffic Control using An Ecological Interface Design\",\"authors\":\"M. Ellejmi, S. Bagassi, A. Persiani\",\"doi\":\"10.2514/6.2018-2939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project “Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision” (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies.\",\"PeriodicalId\":326346,\"journal\":{\"name\":\"2018 Modeling and Simulation Technologies Conference\",\"volume\":\"326 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Modeling and Simulation Technologies Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-2939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Modeling and Simulation Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-2939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Augmented Reality Tools for the provision of Tower Air Traffic Control using An Ecological Interface Design
One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project “Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision” (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies.