神经网络的简单模拟非线性电路

Myung-Ryul Choi, Jin-Sung Park
{"title":"神经网络的简单模拟非线性电路","authors":"Myung-Ryul Choi, Jin-Sung Park","doi":"10.1109/APASIC.1999.824072","DOIUrl":null,"url":null,"abstract":"Simple analog nonlinear circuits are proposed for implementing neural networks using standard CMOS technology. Three analog nonlinear circuits are proposed: a nonlinear difference circuit, a nonlinear synapse circuit and a nonlinear multiplier (which is composed of the proposed nonlinear difference circuit and the proposed nonlinear synapse circuit.) The proposed multiplier takes less silicon area than the conventional linear multipliers do. The proposed nonlinear circuits are fully simulated using HPSICE. The proposed nonlinear circuits are applied for implementation of multi-layered feedforward circuits and MEBP (modified error backpropagation) learning circuitry. The implemented neural networks have been simulated using HSPICE circuit simulator and produce an output voltage, which is uniquely determined by any pair of learning input patterns. The proposed nonlinear circuits are very suitable for future implementation of the large-scale neural networks with learning.","PeriodicalId":346808,"journal":{"name":"AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple analog nonlinear circuits for neural networks\",\"authors\":\"Myung-Ryul Choi, Jin-Sung Park\",\"doi\":\"10.1109/APASIC.1999.824072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple analog nonlinear circuits are proposed for implementing neural networks using standard CMOS technology. Three analog nonlinear circuits are proposed: a nonlinear difference circuit, a nonlinear synapse circuit and a nonlinear multiplier (which is composed of the proposed nonlinear difference circuit and the proposed nonlinear synapse circuit.) The proposed multiplier takes less silicon area than the conventional linear multipliers do. The proposed nonlinear circuits are fully simulated using HPSICE. The proposed nonlinear circuits are applied for implementation of multi-layered feedforward circuits and MEBP (modified error backpropagation) learning circuitry. The implemented neural networks have been simulated using HSPICE circuit simulator and produce an output voltage, which is uniquely determined by any pair of learning input patterns. The proposed nonlinear circuits are very suitable for future implementation of the large-scale neural networks with learning.\",\"PeriodicalId\":346808,\"journal\":{\"name\":\"AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APASIC.1999.824072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AP-ASIC'99. First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APASIC.1999.824072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用标准CMOS技术,提出了简单的模拟非线性电路来实现神经网络。提出了三种模拟非线性电路:非线性差分电路、非线性突触电路和非线性乘法器(由所提出的非线性差分电路和所提出的非线性突触电路组成)。所提出的乘法器比传统的线性乘法器占用更少的硅面积。利用hpice对所提出的非线性电路进行了全面仿真。所提出的非线性电路用于实现多层前馈电路和修正误差反向传播学习电路。利用HSPICE电路模拟器对所实现的神经网络进行了仿真,并产生了一个由任意一对学习输入模式唯一确定的输出电压。所提出的非线性电路非常适合将来实现具有学习能力的大规模神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simple analog nonlinear circuits for neural networks
Simple analog nonlinear circuits are proposed for implementing neural networks using standard CMOS technology. Three analog nonlinear circuits are proposed: a nonlinear difference circuit, a nonlinear synapse circuit and a nonlinear multiplier (which is composed of the proposed nonlinear difference circuit and the proposed nonlinear synapse circuit.) The proposed multiplier takes less silicon area than the conventional linear multipliers do. The proposed nonlinear circuits are fully simulated using HPSICE. The proposed nonlinear circuits are applied for implementation of multi-layered feedforward circuits and MEBP (modified error backpropagation) learning circuitry. The implemented neural networks have been simulated using HSPICE circuit simulator and produce an output voltage, which is uniquely determined by any pair of learning input patterns. The proposed nonlinear circuits are very suitable for future implementation of the large-scale neural networks with learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 50% power reduction scheme for CMOS relaxation oscillator Design and analysis of symmetric dual-layer spiral inductors for RF integrated circuits Implementation of a cycle-based simulator for the design of a processor core A high-performance low-power asynchronous matrix-vector multiplier for discrete cosine transform A 120 MHz SC 4th-order elliptic interpolation filter with accurate gain and offset compensation for direct digital frequency synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1