HEVC编码中快速CU深度估计算法

Ei Ei Tun, S. Aramvith, Y. Miyanaga
{"title":"HEVC编码中快速CU深度估计算法","authors":"Ei Ei Tun, S. Aramvith, Y. Miyanaga","doi":"10.1109/icce-asia46551.2019.8941594","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast coding unit (CU) depth estimation algorithm based on genetic algorithm (GA). Finding the optimal splitting pattern of each coding tree unit (CTU) from many possibilities is represented as an optimization problem and this splitting pattern is rapidly searched by a low-complexity optimizer. A suitable chromosome structure and an efficient fitness function are firstly proposed. The experimental results show 69.2% computational time on average can reduced by the proposed method compared with HM16.5. Compared with start-of-the-art fast encoding method, the proposed one can achieve 5.2% time saving on average under a comparable BD-PSNR.","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"873 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast CU Depth Estimation Algorithm for HEVC Inter Coding\",\"authors\":\"Ei Ei Tun, S. Aramvith, Y. Miyanaga\",\"doi\":\"10.1109/icce-asia46551.2019.8941594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast coding unit (CU) depth estimation algorithm based on genetic algorithm (GA). Finding the optimal splitting pattern of each coding tree unit (CTU) from many possibilities is represented as an optimization problem and this splitting pattern is rapidly searched by a low-complexity optimizer. A suitable chromosome structure and an efficient fitness function are firstly proposed. The experimental results show 69.2% computational time on average can reduced by the proposed method compared with HM16.5. Compared with start-of-the-art fast encoding method, the proposed one can achieve 5.2% time saving on average under a comparable BD-PSNR.\",\"PeriodicalId\":117814,\"journal\":{\"name\":\"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)\",\"volume\":\"873 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icce-asia46551.2019.8941594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8941594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于遗传算法(GA)的快速编码单元深度估计算法。将从多种可能性中寻找每个编码树单元(CTU)的最优分割模式表示为一个优化问题,并用低复杂度优化器快速搜索该分割模式。首先提出了合适的染色体结构和有效的适应度函数。实验结果表明,与HM16.5相比,该方法平均可减少69.2%的计算时间。与现有的快速编码方法相比,在同等的BD-PSNR下,该方法平均可节省5.2%的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast CU Depth Estimation Algorithm for HEVC Inter Coding
This paper proposes a fast coding unit (CU) depth estimation algorithm based on genetic algorithm (GA). Finding the optimal splitting pattern of each coding tree unit (CTU) from many possibilities is represented as an optimization problem and this splitting pattern is rapidly searched by a low-complexity optimizer. A suitable chromosome structure and an efficient fitness function are firstly proposed. The experimental results show 69.2% computational time on average can reduced by the proposed method compared with HM16.5. Compared with start-of-the-art fast encoding method, the proposed one can achieve 5.2% time saving on average under a comparable BD-PSNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illumination Invariant Thermal Face Recognition using Convolutional Neural Network Fusion Technology of 3D Point Cloud Map for Objects Classification Tour Miner: Mining System of Tour Plans from SNS: Extraction of Travel Records from Check-in Information Portable Blood Typing Device Using Image Analysis Ambient Mode: A Novel Service and Intelligent Control based on User Awareness using BLE and Wi-Fi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1