用共振扩散EUV散射表征不同Mo层厚度下Mo/Si镜面界面粗糙度

A. Haase, V. Soltwisch, F. Scholze, S. Braun
{"title":"用共振扩散EUV散射表征不同Mo层厚度下Mo/Si镜面界面粗糙度","authors":"A. Haase, V. Soltwisch, F. Scholze, S. Braun","doi":"10.1117/12.2191265","DOIUrl":null,"url":null,"abstract":"The throughput of extreme ultraviolet (EUV) lithography systems is presently strongly limited by the available radiant power at the wafer level. Besides increasing the power of EUV sources, also the quality of the optical elements plays a key role. With state of the art multilayer mirrors the main cause of diminished reflectance is surface and interface roughness as well as interface diffusion. Both properties lead to reduced specular reflectance while only the interface roughness causes diffuse scattering. EUV diffuse scatter thus allows to selectively assess the contribution of the interface roughness. The intensity distribution of diffusely scattered EUV radiation provides information on vertical and lateral correlations of the surface and interface roughness through the appearance of resonant diffuse scattering (RDS) sheets. The study of off-specular scattering thus serves as a natural tool for the investigation of the roughness of the interfaces. However, upon near-normal incidence impinging EUV radiation, dynamical scattering contributions from thickness oscillations (Kiessig fringes) lead to Bragg lines which intersect the RDS sheets. This causes strong resonant enhancement in the scatter cross section which we called “Kiessig-like peak\" in analogy to the well known phenomenon of Bragg-like peaks appearing in hard X-ray grazing incidence measurement geometries. Thus for power spectral density studies of multilayer interface roughness, resonant dynamical scattering cannot be neglected. Theoretical simulations based on the distorted-wave Born approximation enable to separate dynamic features of the multilayer from roughness induced scattering. This allows to consistently determine an interface power spectral density (PSD). We have analyzed magnetron sputtered high-reflectance Mo/Si multilayer mirrors with different nominal molybdenum layer thicknesses from 1.7 nm to 3.05 nm crossing the Mo crystallization threshold. Our off-specular scattering measurements at multilayer samples were conducted at the PTB-EUV radiometry beamline at the Metrology Light Source (MLS) in Berlin. The samples were produced by magnetron sputtering and pre-characterized by Kα X-ray reflectivity at Fraunhofer IWS, Dresden.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering\",\"authors\":\"A. Haase, V. Soltwisch, F. Scholze, S. Braun\",\"doi\":\"10.1117/12.2191265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The throughput of extreme ultraviolet (EUV) lithography systems is presently strongly limited by the available radiant power at the wafer level. Besides increasing the power of EUV sources, also the quality of the optical elements plays a key role. With state of the art multilayer mirrors the main cause of diminished reflectance is surface and interface roughness as well as interface diffusion. Both properties lead to reduced specular reflectance while only the interface roughness causes diffuse scattering. EUV diffuse scatter thus allows to selectively assess the contribution of the interface roughness. The intensity distribution of diffusely scattered EUV radiation provides information on vertical and lateral correlations of the surface and interface roughness through the appearance of resonant diffuse scattering (RDS) sheets. The study of off-specular scattering thus serves as a natural tool for the investigation of the roughness of the interfaces. However, upon near-normal incidence impinging EUV radiation, dynamical scattering contributions from thickness oscillations (Kiessig fringes) lead to Bragg lines which intersect the RDS sheets. This causes strong resonant enhancement in the scatter cross section which we called “Kiessig-like peak\\\" in analogy to the well known phenomenon of Bragg-like peaks appearing in hard X-ray grazing incidence measurement geometries. Thus for power spectral density studies of multilayer interface roughness, resonant dynamical scattering cannot be neglected. Theoretical simulations based on the distorted-wave Born approximation enable to separate dynamic features of the multilayer from roughness induced scattering. This allows to consistently determine an interface power spectral density (PSD). We have analyzed magnetron sputtered high-reflectance Mo/Si multilayer mirrors with different nominal molybdenum layer thicknesses from 1.7 nm to 3.05 nm crossing the Mo crystallization threshold. Our off-specular scattering measurements at multilayer samples were conducted at the PTB-EUV radiometry beamline at the Metrology Light Source (MLS) in Berlin. The samples were produced by magnetron sputtering and pre-characterized by Kα X-ray reflectivity at Fraunhofer IWS, Dresden.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

极紫外(EUV)光刻系统的吞吐量目前受到晶圆级可用辐射功率的强烈限制。除了提高极紫外光源的功率外,光学元件的质量也起着关键作用。在现有的多层反射镜中,导致反射率降低的主要原因是表面和界面粗糙度以及界面扩散。这两种性质导致镜面反射率降低,而只有界面粗糙度导致漫射散射。因此,EUV漫射散射允许有选择地评估界面粗糙度的贡献。扩散散射EUV辐射的强度分布通过共振扩散散射(RDS)片的出现提供了表面和界面粗糙度的垂直和横向相关信息。因此,对非镜面散射的研究是研究界面粗糙度的自然工具。然而,在接近正入射的碰撞EUV辐射中,厚度振荡(Kiessig条纹)的动态散射贡献导致与RDS片相交的布拉格线。这在散射截面中引起强烈的共振增强,我们称之为“kiessig样峰”,类似于在硬x射线掠入射测量几何中出现的众所周知的布拉格样峰现象。因此,在多层界面粗糙度的功率谱密度研究中,谐振动力散射是不可忽视的。基于畸变波玻恩近似的理论模拟能够将多层材料的动态特性与粗糙散射分离开来。这样可以一致地确定界面功率谱密度(PSD)。我们分析了磁控溅射高反射率Mo/Si多层反射镜,其标称钼层厚度从1.7 nm到3.05 nm跨越Mo结晶阈值。多层样品的非镜面散射测量是在柏林计量光源(MLS)的PTB-EUV辐射测量光束线上进行的。样品采用磁控溅射制备,并在德累斯顿Fraunhofer IWS用Kα x射线反射率进行预表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Mo/Si mirror interface roughness for different Mo layer thickness using resonant diffuse EUV scattering
The throughput of extreme ultraviolet (EUV) lithography systems is presently strongly limited by the available radiant power at the wafer level. Besides increasing the power of EUV sources, also the quality of the optical elements plays a key role. With state of the art multilayer mirrors the main cause of diminished reflectance is surface and interface roughness as well as interface diffusion. Both properties lead to reduced specular reflectance while only the interface roughness causes diffuse scattering. EUV diffuse scatter thus allows to selectively assess the contribution of the interface roughness. The intensity distribution of diffusely scattered EUV radiation provides information on vertical and lateral correlations of the surface and interface roughness through the appearance of resonant diffuse scattering (RDS) sheets. The study of off-specular scattering thus serves as a natural tool for the investigation of the roughness of the interfaces. However, upon near-normal incidence impinging EUV radiation, dynamical scattering contributions from thickness oscillations (Kiessig fringes) lead to Bragg lines which intersect the RDS sheets. This causes strong resonant enhancement in the scatter cross section which we called “Kiessig-like peak" in analogy to the well known phenomenon of Bragg-like peaks appearing in hard X-ray grazing incidence measurement geometries. Thus for power spectral density studies of multilayer interface roughness, resonant dynamical scattering cannot be neglected. Theoretical simulations based on the distorted-wave Born approximation enable to separate dynamic features of the multilayer from roughness induced scattering. This allows to consistently determine an interface power spectral density (PSD). We have analyzed magnetron sputtered high-reflectance Mo/Si multilayer mirrors with different nominal molybdenum layer thicknesses from 1.7 nm to 3.05 nm crossing the Mo crystallization threshold. Our off-specular scattering measurements at multilayer samples were conducted at the PTB-EUV radiometry beamline at the Metrology Light Source (MLS) in Berlin. The samples were produced by magnetron sputtering and pre-characterized by Kα X-ray reflectivity at Fraunhofer IWS, Dresden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of laser radar tooling ball measurements: focus dependence Performance of silicon immersed gratings: measurement, analysis, and modeling High reflecting dielectric mirror coatings deposited with plasma assisted reactive magnetron sputtering Fluorescence and multilayer structure of the scorpion cuticle Multispectral thin film coating on infrared detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1