多传感器系统中传感器偏差的估计

E. Dela Cruz, A. Alouani, T. R. Rice, W. Blair
{"title":"多传感器系统中传感器偏差的估计","authors":"E. Dela Cruz, A. Alouani, T. R. Rice, W. Blair","doi":"10.1109/SECON.1992.202338","DOIUrl":null,"url":null,"abstract":"An adaptive Kalman-filter-based technique to estimate and remove the sensor biases in a multiradar system is presented. The measurement model is based on the Taylor series approximation of the exact model and it incorporates range bias, bearing bias, and elevation bias. The technique was implemented using target tracks. The simulation results are presented. It was found that this technique gives accurate estimates of the sensor biases when given a reasonable model of the bias dynamics.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"333 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Estimation of sensor bias in multisensor systems\",\"authors\":\"E. Dela Cruz, A. Alouani, T. R. Rice, W. Blair\",\"doi\":\"10.1109/SECON.1992.202338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive Kalman-filter-based technique to estimate and remove the sensor biases in a multiradar system is presented. The measurement model is based on the Taylor series approximation of the exact model and it incorporates range bias, bearing bias, and elevation bias. The technique was implemented using target tracks. The simulation results are presented. It was found that this technique gives accurate estimates of the sensor biases when given a reasonable model of the bias dynamics.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"333 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于自适应卡尔曼滤波的多雷达系统传感器偏差估计和消除技术。测量模型是基于精确模型的泰勒级数近似,它包含距离偏差、方位偏差和仰角偏差。该技术是利用目标航迹实现的。给出了仿真结果。研究发现,当给出一个合理的偏置动力学模型时,该技术可以准确地估计传感器的偏置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of sensor bias in multisensor systems
An adaptive Kalman-filter-based technique to estimate and remove the sensor biases in a multiradar system is presented. The measurement model is based on the Taylor series approximation of the exact model and it incorporates range bias, bearing bias, and elevation bias. The technique was implemented using target tracks. The simulation results are presented. It was found that this technique gives accurate estimates of the sensor biases when given a reasonable model of the bias dynamics.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BeRM: bioelectric response monitor Canonical representation of multivalued logic functions A novel method for non-invasive multispectral imaging of tissue An improved initialization algorithm for use with the K-means algorithm for code book generation Gain enhancement of circular waveguide antennas using dielectric disc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1