{"title":"增材制造软气动夹持器集成远程操作水下航行器(ROV)用于抓取考古遗迹","authors":"Emre Tugberk Gulnergiz, S. Dilibal, Bilal Gormus, Josiah Owusu Danquah, Omar Faruk Emon","doi":"10.1109/HORA58378.2023.10156774","DOIUrl":null,"url":null,"abstract":"The use of Remote Operated Vehicles (ROVs) in underwater research has become widespread. However, conventional gripper systems are often inadequate for handling delicate underwater objects, such as archaeological artifacts. This study presents the development and integration of a soft pneumatic gripper into a ROV system, specifically designed for underwater archaeological applications. The soft gripper offers adaptability and compliance, ensuring safer and more precise grasping of fragile items. The manufactured soft force sensor is incorporated into the soft pneumatic gripper for tactile feedback, minimizing the risk of damage during handling. The gripper system also includes a pneumatic cylinder for extending its reach during grasping. Using Abaqus Finite Element Software, preliminary simulations were made to study the contact forces exerted by the gripper jaws. The numerical results, based on static non-linear analysis demonstrated the soft gripper's effectiveness, adaptability, and reliability on force feedback in land-based and underwater scenarios. This research contributes to the advancement of robotics for underwater archaeology by providing a soft pneumatic gripper system that enables safe and efficient handling of delicate artifacts.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively Manufactured Soft Pneumatic Gripper Integrated Remotely Operated Underwater Vehicle (ROV) for Grasping Archeological Remains\",\"authors\":\"Emre Tugberk Gulnergiz, S. Dilibal, Bilal Gormus, Josiah Owusu Danquah, Omar Faruk Emon\",\"doi\":\"10.1109/HORA58378.2023.10156774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Remote Operated Vehicles (ROVs) in underwater research has become widespread. However, conventional gripper systems are often inadequate for handling delicate underwater objects, such as archaeological artifacts. This study presents the development and integration of a soft pneumatic gripper into a ROV system, specifically designed for underwater archaeological applications. The soft gripper offers adaptability and compliance, ensuring safer and more precise grasping of fragile items. The manufactured soft force sensor is incorporated into the soft pneumatic gripper for tactile feedback, minimizing the risk of damage during handling. The gripper system also includes a pneumatic cylinder for extending its reach during grasping. Using Abaqus Finite Element Software, preliminary simulations were made to study the contact forces exerted by the gripper jaws. The numerical results, based on static non-linear analysis demonstrated the soft gripper's effectiveness, adaptability, and reliability on force feedback in land-based and underwater scenarios. This research contributes to the advancement of robotics for underwater archaeology by providing a soft pneumatic gripper system that enables safe and efficient handling of delicate artifacts.\",\"PeriodicalId\":247679,\"journal\":{\"name\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA58378.2023.10156774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10156774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of Remote Operated Vehicles (ROVs) in underwater research has become widespread. However, conventional gripper systems are often inadequate for handling delicate underwater objects, such as archaeological artifacts. This study presents the development and integration of a soft pneumatic gripper into a ROV system, specifically designed for underwater archaeological applications. The soft gripper offers adaptability and compliance, ensuring safer and more precise grasping of fragile items. The manufactured soft force sensor is incorporated into the soft pneumatic gripper for tactile feedback, minimizing the risk of damage during handling. The gripper system also includes a pneumatic cylinder for extending its reach during grasping. Using Abaqus Finite Element Software, preliminary simulations were made to study the contact forces exerted by the gripper jaws. The numerical results, based on static non-linear analysis demonstrated the soft gripper's effectiveness, adaptability, and reliability on force feedback in land-based and underwater scenarios. This research contributes to the advancement of robotics for underwater archaeology by providing a soft pneumatic gripper system that enables safe and efficient handling of delicate artifacts.