利用广义Hebbian规则初始化内部表征加速前馈神经网络的训练

N. Karayiannis
{"title":"利用广义Hebbian规则初始化内部表征加速前馈神经网络的训练","authors":"N. Karayiannis","doi":"10.1109/ICNN.1994.374134","DOIUrl":null,"url":null,"abstract":"It is argued in this paper that most of the problems associated with the application of existing learning algorithms in complex training tasks can be overcome by using only the input data to determine the role of the hidden units, which form a data compression or a data expansion layer. The initial set of internal representations can be formed through an unsupervised learning process applied before the supervised training algorithm. The synaptic weights that connect the input of the network with the hidden units can be determined through various linear or nonlinear variations of a generalized Hebbian learning rule, known as the Oja's rule. Several experiments indicated that the use of the proposed initialization of the internal representations improves significantly the convergence of various gradient-descent-based algorithms used to perform nontrivial training tasks.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations\",\"authors\":\"N. Karayiannis\",\"doi\":\"10.1109/ICNN.1994.374134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is argued in this paper that most of the problems associated with the application of existing learning algorithms in complex training tasks can be overcome by using only the input data to determine the role of the hidden units, which form a data compression or a data expansion layer. The initial set of internal representations can be formed through an unsupervised learning process applied before the supervised training algorithm. The synaptic weights that connect the input of the network with the hidden units can be determined through various linear or nonlinear variations of a generalized Hebbian learning rule, known as the Oja's rule. Several experiments indicated that the use of the proposed initialization of the internal representations improves significantly the convergence of various gradient-descent-based algorithms used to perform nontrivial training tasks.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文认为,通过仅使用输入数据来确定隐藏单元的作用,可以克服与现有学习算法在复杂训练任务中的应用相关的大多数问题,这些隐藏单元构成数据压缩层或数据扩展层。内部表示的初始集可以通过在监督训练算法之前应用的无监督学习过程来形成。连接网络输入和隐藏单元的突触权重可以通过广义Hebbian学习规则(即Oja规则)的各种线性或非线性变化来确定。几个实验表明,使用所提出的内部表示初始化显著提高了用于执行非平凡训练任务的各种基于梯度下降的算法的收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations
It is argued in this paper that most of the problems associated with the application of existing learning algorithms in complex training tasks can be overcome by using only the input data to determine the role of the hidden units, which form a data compression or a data expansion layer. The initial set of internal representations can be formed through an unsupervised learning process applied before the supervised training algorithm. The synaptic weights that connect the input of the network with the hidden units can be determined through various linear or nonlinear variations of a generalized Hebbian learning rule, known as the Oja's rule. Several experiments indicated that the use of the proposed initialization of the internal representations improves significantly the convergence of various gradient-descent-based algorithms used to perform nontrivial training tasks.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1