基于深度低秩加稀疏网络的快速动态MR图像在线重构

Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu
{"title":"基于深度低秩加稀疏网络的快速动态MR图像在线重构","authors":"Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu","doi":"10.1109/CBMS55023.2022.00036","DOIUrl":null,"url":null,"abstract":"In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online reconstruction of fast dynamic MR imaging using deep low-rank plus sparse network\",\"authors\":\"Che Wang, Seng Jia, Zhonghong Yan, Yijia Zheng, Shaonan Liu, Haifeng Wang, Dong Liang, Yanjie Zhu\",\"doi\":\"10.1109/CBMS55023.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"353 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了测试深度低秩脉冲稀疏网络(L+S-Net)用于快速动态磁共振成像的在线重构性能。L+S-Net在Gadgetron平台上实现,用于扫描仪的在线重建。虽然L+S-net具有良好的图像重建性能。采用ESPIRiT方法估算线圈灵敏度需要较长时间。本研究采用SigPy的信号处理软件包,加速线圈灵敏度的计算,加快在线重建速度。实验结果表明,与基于CPU的方法进行了比较。,采用基于SigPy GPU的网格重建方法,线圈灵敏度估计时间可缩短100倍以上。重建性能稳定,可在10秒内实现在线快速动态磁共振成像重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online reconstruction of fast dynamic MR imaging using deep low-rank plus sparse network
In order to test the performance of online reconstruction of deep low-rank pulse sparse network (L+S-Net) for fast dynamic MR imaging. The L+S-Net was implemented on Gadgetron platform for online reconstruction of the scanner. Although L+S-net has a good image reconstruction performance., it takes a long time to estimate the coil sensitivity using ESPIRiT method. In this study, SigPy's signal processing software package was adopted to accelerate the calculation of coil sensitivity to speed up the online reconstruction. The results of experiments showed that compared with the CPU based method., the time of the coil sensitivity estimation could be shortened more than 100 times by using the gridding reconstruction method based on SigPy GPU. The reconstruction performance is stable and can realize online fast dynamic MR imaging reconstruction within 10 seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1