水热炭化法处理农业废弃物

W. Raja, Ubhat Ali, Akhil Gupta, Pratik Kumar
{"title":"水热炭化法处理农业废弃物","authors":"W. Raja, Ubhat Ali, Akhil Gupta, Pratik Kumar","doi":"10.51611/iars.irj.v12i02.2022.215","DOIUrl":null,"url":null,"abstract":"There has been a huge emphasis on converting waste into energy in developing countries like India since a couple of decades now. Agriculture is a huge industry in India and produces huge amount of agricultural waste which goes around 350 million tons every year.  Out of this huge weight of waste more than 40 million tons is sugarcane bagasse. Only a small percentage of this waste is collected and out of that, less than 20% gets advanced treatments like incineration, pyrolysis etc. and the rest of it ends up in landfills. In this study Hydrothermal Carbonization of bagasse is carried out in order to raise its carbon content and achieve a higher calorific value. The waste after undergoing the HTC is called hydrochar and mostly resembles the properties of lignite coal. A number of tests are performed on the feedstock at 200 ° C and 220 ° C for three reaction periods viz. 2, 4 and 6 hours. The yield of the char is found to decreases with increase in temperature and retention time whereas the Carbon percentage shows a positive trend and goes as high as 69.1 % at 220° C with Calorific value as 24.44 MJ/kg at 6 hours reaction period.","PeriodicalId":142446,"journal":{"name":"IARS' International Research Journal","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agricultural Waste Management by Hydrothermal Carbonization\",\"authors\":\"W. Raja, Ubhat Ali, Akhil Gupta, Pratik Kumar\",\"doi\":\"10.51611/iars.irj.v12i02.2022.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a huge emphasis on converting waste into energy in developing countries like India since a couple of decades now. Agriculture is a huge industry in India and produces huge amount of agricultural waste which goes around 350 million tons every year.  Out of this huge weight of waste more than 40 million tons is sugarcane bagasse. Only a small percentage of this waste is collected and out of that, less than 20% gets advanced treatments like incineration, pyrolysis etc. and the rest of it ends up in landfills. In this study Hydrothermal Carbonization of bagasse is carried out in order to raise its carbon content and achieve a higher calorific value. The waste after undergoing the HTC is called hydrochar and mostly resembles the properties of lignite coal. A number of tests are performed on the feedstock at 200 ° C and 220 ° C for three reaction periods viz. 2, 4 and 6 hours. The yield of the char is found to decreases with increase in temperature and retention time whereas the Carbon percentage shows a positive trend and goes as high as 69.1 % at 220° C with Calorific value as 24.44 MJ/kg at 6 hours reaction period.\",\"PeriodicalId\":142446,\"journal\":{\"name\":\"IARS' International Research Journal\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IARS' International Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51611/iars.irj.v12i02.2022.215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IARS' International Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51611/iars.irj.v12i02.2022.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,印度等发展中国家一直非常重视将废物转化为能源。农业在印度是一个巨大的产业,每年产生大量的农业废物,约为3.5亿吨。在这些重量巨大的废物中,有4000多万吨是甘蔗渣。只有一小部分垃圾被收集起来,其中不到20%得到焚烧、热解等高级处理,其余的最终被填埋。为了提高甘蔗渣的含碳量,获得更高的热值,本研究对甘蔗渣进行了水热碳化。经过HTC后的废物被称为氢炭,其性质与褐煤相似。在200°C和220°C的三个反应周期(即2、4和6小时)下对原料进行了许多测试。炭的产率随温度和停留时间的增加而降低,而碳率呈上升趋势,在220℃时达到69.1%,反应6h时的热值为24.44 MJ/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agricultural Waste Management by Hydrothermal Carbonization
There has been a huge emphasis on converting waste into energy in developing countries like India since a couple of decades now. Agriculture is a huge industry in India and produces huge amount of agricultural waste which goes around 350 million tons every year.  Out of this huge weight of waste more than 40 million tons is sugarcane bagasse. Only a small percentage of this waste is collected and out of that, less than 20% gets advanced treatments like incineration, pyrolysis etc. and the rest of it ends up in landfills. In this study Hydrothermal Carbonization of bagasse is carried out in order to raise its carbon content and achieve a higher calorific value. The waste after undergoing the HTC is called hydrochar and mostly resembles the properties of lignite coal. A number of tests are performed on the feedstock at 200 ° C and 220 ° C for three reaction periods viz. 2, 4 and 6 hours. The yield of the char is found to decreases with increase in temperature and retention time whereas the Carbon percentage shows a positive trend and goes as high as 69.1 % at 220° C with Calorific value as 24.44 MJ/kg at 6 hours reaction period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Metabolic Syndrome in Pre and Post Menopausal Women Agricultural Waste Management by Hydrothermal Carbonization A Study on Biologically Active Chalcone Based Benzodiazepines A systematic review on Drug Re-profiling/Re-Purposing SYNTHESIS OF α- HYDROXY-β, γ-UNSATURATED ESTERS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1