无电池无线传感器网络中能量采集预测算法

C. Bergonzini, D. Brunelli, L. Benini
{"title":"无电池无线传感器网络中能量采集预测算法","authors":"C. Bergonzini, D. Brunelli, L. Benini","doi":"10.1109/IWASI.2009.5184785","DOIUrl":null,"url":null,"abstract":"Several wireless sensor network (WSN) applications leverage energy harvesting technologies such as small size photo-voltaic modules. The advantage of solar energy over other forms of environmental energy is that the available solar power can be predicted with reasonable accuracy allowing the implementation of efficient power management techniques. However accurate predictions of future energy profiles can be expensive in term of memory occupancy and complexity and a trade-off between accuracy and computational effort must be evaluated. In this paper we compare different solar energy prediction algorithms that give estimates future available energy over the time. They are computationally simple and have a small memory footprint to facilitate the implementation in resource limited solar harvesting sensor nodes. Simulation results show that the most effective predictors is possible achieve high accuracy, diverging from real energy profile by less than 10%.","PeriodicalId":246540,"journal":{"name":"2009 3rd International Workshop on Advances in sensors and Interfaces","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Algorithms for harvested energy prediction in batteryless wireless sensor networks\",\"authors\":\"C. Bergonzini, D. Brunelli, L. Benini\",\"doi\":\"10.1109/IWASI.2009.5184785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several wireless sensor network (WSN) applications leverage energy harvesting technologies such as small size photo-voltaic modules. The advantage of solar energy over other forms of environmental energy is that the available solar power can be predicted with reasonable accuracy allowing the implementation of efficient power management techniques. However accurate predictions of future energy profiles can be expensive in term of memory occupancy and complexity and a trade-off between accuracy and computational effort must be evaluated. In this paper we compare different solar energy prediction algorithms that give estimates future available energy over the time. They are computationally simple and have a small memory footprint to facilitate the implementation in resource limited solar harvesting sensor nodes. Simulation results show that the most effective predictors is possible achieve high accuracy, diverging from real energy profile by less than 10%.\",\"PeriodicalId\":246540,\"journal\":{\"name\":\"2009 3rd International Workshop on Advances in sensors and Interfaces\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Workshop on Advances in sensors and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWASI.2009.5184785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Workshop on Advances in sensors and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2009.5184785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

摘要

一些无线传感器网络(WSN)应用利用能量收集技术,如小型光伏模块。与其他形式的环境能源相比,太阳能的优势在于可以合理准确地预测可用的太阳能,从而实现有效的电源管理技术。然而,就内存占用和复杂性而言,对未来能源分布的准确预测可能是昂贵的,并且必须评估准确性和计算工作量之间的权衡。在本文中,我们比较了不同的太阳能预测算法,这些算法给出了一段时间内未来可用能源的估计。它们计算简单,内存占用小,便于在资源有限的太阳能收集传感器节点中实现。仿真结果表明,最有效的预测器可以达到较高的精度,与实际能量分布的偏差小于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for harvested energy prediction in batteryless wireless sensor networks
Several wireless sensor network (WSN) applications leverage energy harvesting technologies such as small size photo-voltaic modules. The advantage of solar energy over other forms of environmental energy is that the available solar power can be predicted with reasonable accuracy allowing the implementation of efficient power management techniques. However accurate predictions of future energy profiles can be expensive in term of memory occupancy and complexity and a trade-off between accuracy and computational effort must be evaluated. In this paper we compare different solar energy prediction algorithms that give estimates future available energy over the time. They are computationally simple and have a small memory footprint to facilitate the implementation in resource limited solar harvesting sensor nodes. Simulation results show that the most effective predictors is possible achieve high accuracy, diverging from real energy profile by less than 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization and modelling of SnO2 nanowire sensors for CO detection Neutron detection through an SRAM-based test bench Behavioral modeling and simulation of a chemical sensor with its microelectronics front-end interface Membrane proteins embedded in supported lipid bilayers employed in field effect electronic devices HGA-based Auto-tuning of Peltier coolers in PAIS project: New environmental monitoring and early wildfire detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1