非投射依赖解析的深层体系结构

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1508
E. Fonseca, S. Aluísio
{"title":"非投射依赖解析的深层体系结构","authors":"E. Fonseca, S. Aluísio","doi":"10.3115/v1/W15-1508","DOIUrl":null,"url":null,"abstract":"Graph-based dependency parsing algorithms commonly employ features up to third order in an attempt to capture richer syntactic relations. However, each level and each feature combination must be defined manually. Besides that, input features are usually represented as huge, sparse binary vectors, offering limited generalization. In this work, we present a deep architecture for dependency parsing based on a convolutional neural network. It can examine the whole sentence structure before scoring each head/modifier candidate pair, and uses dense embeddings as input. Our model is still under ongoing work, achieving 91.6% unlabeled attachment score in the Penn Treebank.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Deep Architecture for Non-Projective Dependency Parsing\",\"authors\":\"E. Fonseca, S. Aluísio\",\"doi\":\"10.3115/v1/W15-1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph-based dependency parsing algorithms commonly employ features up to third order in an attempt to capture richer syntactic relations. However, each level and each feature combination must be defined manually. Besides that, input features are usually represented as huge, sparse binary vectors, offering limited generalization. In this work, we present a deep architecture for dependency parsing based on a convolutional neural network. It can examine the whole sentence structure before scoring each head/modifier candidate pair, and uses dense embeddings as input. Our model is still under ongoing work, achieving 91.6% unlabeled attachment score in the Penn Treebank.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于图的依赖解析算法通常使用三阶特征,试图捕获更丰富的语法关系。但是,每个级别和每个特征组合必须手动定义。除此之外,输入特征通常被表示为巨大的、稀疏的二值向量,提供有限的泛化。在这项工作中,我们提出了一个基于卷积神经网络的依赖解析的深度架构。它可以在对每个头/修饰语候选对评分之前检查整个句子结构,并使用密集嵌入作为输入。我们的模型仍在进行中,在Penn Treebank中获得了91.6%的未标记附件分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Architecture for Non-Projective Dependency Parsing
Graph-based dependency parsing algorithms commonly employ features up to third order in an attempt to capture richer syntactic relations. However, each level and each feature combination must be defined manually. Besides that, input features are usually represented as huge, sparse binary vectors, offering limited generalization. In this work, we present a deep architecture for dependency parsing based on a convolutional neural network. It can examine the whole sentence structure before scoring each head/modifier candidate pair, and uses dense embeddings as input. Our model is still under ongoing work, achieving 91.6% unlabeled attachment score in the Penn Treebank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributional Semantic Concept Models for Entity Relation Discovery Learning Distributed Representations for Multilingual Text Sequences Vector Space Models for Scientific Document Summarization A Deep Architecture for Non-Projective Dependency Parsing Dependency Link Embeddings: Continuous Representations of Syntactic Substructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1