Jeroen S. Benjamins, R. Hessels, Ignace T. C. Hooge
{"title":"Gazecode","authors":"Jeroen S. Benjamins, R. Hessels, Ignace T. C. Hooge","doi":"10.1145/3204493.3204568","DOIUrl":null,"url":null,"abstract":"Purpose: Eye movements recorded with mobile eye trackers generally have to be mapped to the visual stimulus manually. Manufacturer software usually has sub-optimal user interfaces. Here, we compare our in-house developed open-source alternative to the manufacturer software, called GazeCode. Method: 330 seconds of eye movements were recorded with the Tobii Pro Glasses 2. Eight coders subsequently categorized fixations using both Tobii Pro Lab and GazeCode. Results: Average manual mapping speed was more than two times faster when using GazeCode (0.649 events/s) compared with Tobii Pro Lab (0.292 events/s). Inter-rater reliability (Cohen's Kappa) was similar and satisfactory; 0.886 for Tobii Pro Lab and 0.871 for GazeCode. Conclusion: GazeCode is a faster alternative to Tobii Pro Lab for mapping eye movements to the visual stimulus. Moreover, it accepts eye-tracking data from manufacturers SMI, Positive Science, Tobii, and Pupil Labs.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gazecode\",\"authors\":\"Jeroen S. Benjamins, R. Hessels, Ignace T. C. Hooge\",\"doi\":\"10.1145/3204493.3204568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Eye movements recorded with mobile eye trackers generally have to be mapped to the visual stimulus manually. Manufacturer software usually has sub-optimal user interfaces. Here, we compare our in-house developed open-source alternative to the manufacturer software, called GazeCode. Method: 330 seconds of eye movements were recorded with the Tobii Pro Glasses 2. Eight coders subsequently categorized fixations using both Tobii Pro Lab and GazeCode. Results: Average manual mapping speed was more than two times faster when using GazeCode (0.649 events/s) compared with Tobii Pro Lab (0.292 events/s). Inter-rater reliability (Cohen's Kappa) was similar and satisfactory; 0.886 for Tobii Pro Lab and 0.871 for GazeCode. Conclusion: GazeCode is a faster alternative to Tobii Pro Lab for mapping eye movements to the visual stimulus. Moreover, it accepts eye-tracking data from manufacturers SMI, Positive Science, Tobii, and Pupil Labs.\",\"PeriodicalId\":237808,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3204493.3204568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purpose: Eye movements recorded with mobile eye trackers generally have to be mapped to the visual stimulus manually. Manufacturer software usually has sub-optimal user interfaces. Here, we compare our in-house developed open-source alternative to the manufacturer software, called GazeCode. Method: 330 seconds of eye movements were recorded with the Tobii Pro Glasses 2. Eight coders subsequently categorized fixations using both Tobii Pro Lab and GazeCode. Results: Average manual mapping speed was more than two times faster when using GazeCode (0.649 events/s) compared with Tobii Pro Lab (0.292 events/s). Inter-rater reliability (Cohen's Kappa) was similar and satisfactory; 0.886 for Tobii Pro Lab and 0.871 for GazeCode. Conclusion: GazeCode is a faster alternative to Tobii Pro Lab for mapping eye movements to the visual stimulus. Moreover, it accepts eye-tracking data from manufacturers SMI, Positive Science, Tobii, and Pupil Labs.