D. A. Barbosa, E. G. G. Barbosa, M. D. C. Molinari, Renata Fuganti Pagliarini, S. R. Marin, Daniel Rockenbach Marin, L. M. Mertz-Henning, A. Nepomuceno
{"title":"组织培养基中添加活性炭可提高大豆基因型依赖性生物量产量","authors":"D. A. Barbosa, E. G. G. Barbosa, M. D. C. Molinari, Renata Fuganti Pagliarini, S. R. Marin, Daniel Rockenbach Marin, L. M. Mertz-Henning, A. Nepomuceno","doi":"10.33158/asb.r156.v8.2022","DOIUrl":null,"url":null,"abstract":"Due to its important participation in the agribusiness model worldwide, soybean actively drives national economies in producing countries. However, biotic and abiotic factors caused by pests and climate changes, respectively, can disrupt its productivity and consequently the business market. For this reason, the development of plants more tolerant to these negative environmental elements has been frequently one of the goals of scientific research. In the pipeline to obtain genetically improved plants, tissue culture protocols often represent a bottleneck, since the efficiency at this stage can be genotype-dependent. Therefore, the objective of this work was to evaluate the root regeneration process of two soybean genotypes (BRS 283 and BRS 537) in four different substrates (vermiculite, sand, medium containing activated charcoal and, control – MS medium and glucose). The rooting development was measured by the root’s length (cm²), dry mass (mg), volume (mm³), surface area (mm²), and diameter (mm). Results showed that in the activated charcoal medium, for both soybean genotypes, roots grew longer and presented a higher dry mass of roots, and root length when compared to vermiculite and sand substrates. We concluded that the efficiency of tissue culture is genotype-dependent since assayed genotypes presented phenotypical responses significantly different. The supplementation of tissue culture medium with active charcoal improved root growth for both genotypes. Therefore, it is likely that this medium can be also successfully applied to other soybean genotypes, or to other crops with similar tissue culture procedures to promote better rooting and plant establishment in further developmental stages.","PeriodicalId":297313,"journal":{"name":"Agronomy Science and Biotechnology","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Activated charcoal added to tissue culture media increases genotype-dependent biomass production in soybean\",\"authors\":\"D. A. Barbosa, E. G. G. Barbosa, M. D. C. Molinari, Renata Fuganti Pagliarini, S. R. Marin, Daniel Rockenbach Marin, L. M. Mertz-Henning, A. Nepomuceno\",\"doi\":\"10.33158/asb.r156.v8.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its important participation in the agribusiness model worldwide, soybean actively drives national economies in producing countries. However, biotic and abiotic factors caused by pests and climate changes, respectively, can disrupt its productivity and consequently the business market. For this reason, the development of plants more tolerant to these negative environmental elements has been frequently one of the goals of scientific research. In the pipeline to obtain genetically improved plants, tissue culture protocols often represent a bottleneck, since the efficiency at this stage can be genotype-dependent. Therefore, the objective of this work was to evaluate the root regeneration process of two soybean genotypes (BRS 283 and BRS 537) in four different substrates (vermiculite, sand, medium containing activated charcoal and, control – MS medium and glucose). The rooting development was measured by the root’s length (cm²), dry mass (mg), volume (mm³), surface area (mm²), and diameter (mm). Results showed that in the activated charcoal medium, for both soybean genotypes, roots grew longer and presented a higher dry mass of roots, and root length when compared to vermiculite and sand substrates. We concluded that the efficiency of tissue culture is genotype-dependent since assayed genotypes presented phenotypical responses significantly different. The supplementation of tissue culture medium with active charcoal improved root growth for both genotypes. Therefore, it is likely that this medium can be also successfully applied to other soybean genotypes, or to other crops with similar tissue culture procedures to promote better rooting and plant establishment in further developmental stages.\",\"PeriodicalId\":297313,\"journal\":{\"name\":\"Agronomy Science and Biotechnology\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Science and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33158/asb.r156.v8.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Science and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33158/asb.r156.v8.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activated charcoal added to tissue culture media increases genotype-dependent biomass production in soybean
Due to its important participation in the agribusiness model worldwide, soybean actively drives national economies in producing countries. However, biotic and abiotic factors caused by pests and climate changes, respectively, can disrupt its productivity and consequently the business market. For this reason, the development of plants more tolerant to these negative environmental elements has been frequently one of the goals of scientific research. In the pipeline to obtain genetically improved plants, tissue culture protocols often represent a bottleneck, since the efficiency at this stage can be genotype-dependent. Therefore, the objective of this work was to evaluate the root regeneration process of two soybean genotypes (BRS 283 and BRS 537) in four different substrates (vermiculite, sand, medium containing activated charcoal and, control – MS medium and glucose). The rooting development was measured by the root’s length (cm²), dry mass (mg), volume (mm³), surface area (mm²), and diameter (mm). Results showed that in the activated charcoal medium, for both soybean genotypes, roots grew longer and presented a higher dry mass of roots, and root length when compared to vermiculite and sand substrates. We concluded that the efficiency of tissue culture is genotype-dependent since assayed genotypes presented phenotypical responses significantly different. The supplementation of tissue culture medium with active charcoal improved root growth for both genotypes. Therefore, it is likely that this medium can be also successfully applied to other soybean genotypes, or to other crops with similar tissue culture procedures to promote better rooting and plant establishment in further developmental stages.