{"title":"MEMS压阻悬臂梁的制造与表征","authors":"Miranji Katta, R. Sandanalakshmi","doi":"10.1109/GCAT52182.2021.9587807","DOIUrl":null,"url":null,"abstract":"A microcantilever array chip made with Micro-Electro-Mechanical System (MEMS) technology has been demonstrated to develop as a biosensor device. This chip includes four gold-covered and embedded polysilicon wire with microfabricated Si beams. The polysilicon coat serves as a piezoresistor, and changes in resistance due to compressive and tensile forces indicate microcantilever deformation. The relationship between initial resistance and microcantilever deflection demonstrates that this device has a detection range of 0-56kΩ. The investigation of the microcantilever response to biotin immobilisation revealed that resistance change caused by Biotin absorption can be observed and reaches a degree of amount independence at Biotin concentrations higher than 80pg/ml. The results suggested that this device could be developed as a piezoresistive-based microcantilever biosensor.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"408 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEMS Piezoresistive Cantilever Fabrication And Characterization\",\"authors\":\"Miranji Katta, R. Sandanalakshmi\",\"doi\":\"10.1109/GCAT52182.2021.9587807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A microcantilever array chip made with Micro-Electro-Mechanical System (MEMS) technology has been demonstrated to develop as a biosensor device. This chip includes four gold-covered and embedded polysilicon wire with microfabricated Si beams. The polysilicon coat serves as a piezoresistor, and changes in resistance due to compressive and tensile forces indicate microcantilever deformation. The relationship between initial resistance and microcantilever deflection demonstrates that this device has a detection range of 0-56kΩ. The investigation of the microcantilever response to biotin immobilisation revealed that resistance change caused by Biotin absorption can be observed and reaches a degree of amount independence at Biotin concentrations higher than 80pg/ml. The results suggested that this device could be developed as a piezoresistive-based microcantilever biosensor.\",\"PeriodicalId\":436231,\"journal\":{\"name\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"volume\":\"408 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCAT52182.2021.9587807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEMS Piezoresistive Cantilever Fabrication And Characterization
A microcantilever array chip made with Micro-Electro-Mechanical System (MEMS) technology has been demonstrated to develop as a biosensor device. This chip includes four gold-covered and embedded polysilicon wire with microfabricated Si beams. The polysilicon coat serves as a piezoresistor, and changes in resistance due to compressive and tensile forces indicate microcantilever deformation. The relationship between initial resistance and microcantilever deflection demonstrates that this device has a detection range of 0-56kΩ. The investigation of the microcantilever response to biotin immobilisation revealed that resistance change caused by Biotin absorption can be observed and reaches a degree of amount independence at Biotin concentrations higher than 80pg/ml. The results suggested that this device could be developed as a piezoresistive-based microcantilever biosensor.